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Abstract

The estimators of instrument variables (IV) regression may be non-normal when IV only
has a low correlation with endogenous explanatory variables. Therefore, the traditional
inference may be unreliable. This project studies the distribution of IV estimator and then,
in particular, focuses on the power and size of test with weak IV. To correct the inference
under weak IV, we simulate Anderson-Rubin test. We find that the size of AR-test improves
significantly so that we can correctly reject the null when it is true, while the power may be
much smaller in small sample size such that we may more likely to make Type II error. We
further investigate more extreme cases of many IV and large sample size and then conclude
that AR test is generally better than t-test.

1 Introduction

Empirically, economists often have the endogenous data which generate bias in ordinary least
squares (OLS) model. One popular methodology for solving inconsistency is instrumental vari-
ables (IV) regression. To implement IV estimators, we usually do two-stage least squares(TSLS)
process. Moreover, the conditions for IV are that they must be independent of error term and
correlated with the endogenous variables. However, in practice, we may include weak IV such
that they are insignificantly correlated with endogenous variables. For instance, Angrist &
Krueger (1991) regress the earnings on years of education and used the season of birth as IV.
They discover that the season of birth is weakly correlated with the year of education, so the
estimated returns on education is similar in OLS and TSLS regression, suggesting that TSLS
estimator has bias. They further point out that applied researchers use weak IV all the time.

Moreover, Staiger & Stock (1997) points out that the asymptotic distribution of estima-
tors is non-normal under weak IV. Thus, the inference breaks down even in large sample size.
There are some methodologies for this issue. For example, Anderson & Rubin (1949) provides
Anderson-Rubin statistic for any number of weak instruments, Moreira (2003) provides condi-
tional likelihood ratio test for one IV and Kleibergen (2002) presents an alternative Lagrange
multiplier test.

This project implements Monte Carlo method to simulate simple regression models under
weak IV to confirm the shutdown of inference, inconsistency and non-normal distribution. We
examine one weak IV case in small sample size first and then imitate the specification in the
paper of Angrist & Krueger (1991) which has many IV and large sample size to confirm that
the problem exists in empirical works.

The result of TSLS estimators’ distribution proves that the bias exists and the distribution
is non-normal especially under weak IV. For statistical inference, we simulate t-test and the
alternative Anderson-Rubin (AR) test. We find that the size of t-tests in small sample are too
large under any number of weak IV. Additionally, the simulation of AR-statistic confirms that
it can correct the size of tests while there is some trade-off for which the power in small sample
may be smaller than that of t-test. Fortunately, we can also improve the power by larger sample
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size. Furthermore, in the extreme but realistic specification, we find that t-test has much larger
size under many weak IV which can hardly be improved by increasing observations; while, we
still can improve the power of AR test by increasing observations. Then, we conclude that
AR-test is generally more reliable if sample size is much greater than the number of IV.

2 IV Regression and Weak Instrument Variables

2.1 IV Regression and Two Stage Least Squares

Consider a linear model

yi = β0 + β1xi,1 + β2xi,2 + ...+ βkxi,k + ui, i = 1, ..., N.

Let xk be a endogenous variable such that Cov(xk, u) 6= 0. To construct consistent estimators,
we apply instrument variables(IV) regression to solve endogenous problems. A random variable
zm is said to be an instrument variable if

1. relevance: E[zmxk] 6= 0.

2. exogeneity: E[zmui] = 0

The relevance condition states that the correlation between instruments and endogenous vari-
ables should be greater than zero. Also, instruments must be exogenous such that they are
uncorrelated with error term. Let z1, z2, ..., zm be instruments. Then, the column vector of
exogenous variables is z = (1, x1, x2, ..., xk−1, z1, z2, ..., zm)′. Since E(zmui) = 0, E(z′u) = 0
where u = (u1, u2, ..., uN )′. Thus, E(z′y) = E(z′x) and then by the Large Number Theory the
IV estimator is

β̂IV =
( 1

N

N∑
i=1

z′ixi

)−1( 1

N

N∑
i=1

z′iyi

)
.

It is well known that this estimator can be implemented by the process of Two Stage Least
Squares(TSLS). TSLS is a two stages of linear regression:

yi = x′i,−kβ−k + xi,kβk + ui

xi,k = z′iπ + vi,

where xi,−k = (1, x1, x2, ..., xk−1)
′ and β−k = (β0, β1, ...βk−1)

′. The TSLS estimator is

β̂TSLS =
( 1

N

N∑
i=1

x̂′ix̂i

)−1( 1

N

N∑
i=1

x̂′iyi

)
,

where x̂i,k = z′iπ̂ is the predicted regressor from the first stage regression. Wooldridge (2010)

shows that β̂TSLS is unbiased and asymptotically normal under the following assumptions,

T1: E(z′iui) = 0 for all i

T2: rank E(z′izi) = k +m & rank E(z′ixi) = k

T3: E(u2i z
′
izi) = σ2E(z′izi), where σ2 = E(u2i )

Assumption T1 is exactly the exogenous condition of IV. T2 guarantees that the estimators
of first and second stage exist(prevent multicollinearity). Then, under these assumptions,

√
N(β̂TSLS − β)

d→ N
(
0, σ2[E(z′x)]−1E(z′z)[E(z′x)]−1

)
Since TSLS is consistent and asymptotically normal, researchers use this estimator under en-
dogeneity for empirical works and inference.
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2.2 Weak IV

Suppose that the relevance condition of IV does not hold. Then, IV are slightly correlated with
endogenous variables. More specifically, we define weak IV as

E[zixi] ≈ 0.

Now, could we get consistent estimators and correct inference under such weak IV? To obtain
the intuition, consider the simple regressions with weak IV z,

yi = βxi + ui

xi = πzi + vi, for all i

E[zixi] ≈ 0

where xi, yi and zi are all scalar.

Fort this scalar regressor and scalar instrument, the weak IV can be identified if the squared
correlation coefficient r2x,z is small. More generally, for a vector of IV, if the coefficient of
determination R2 or the F-statistic for test H0 : π = 0 in first stage regression is small, then we
identify that IV are weak. Since R2 is the measure of goodness for the first stage regression, we
further define R2 as the strength of instrument. Under this specification, the estimator is

β̂TSLS = (
1

N

N∑
i=1

zixi)
−1(

1

N

N∑
i=1

ziyi).

The estimator converges in probability to

β̂TSLS
p→ β +

Cov(z, u)

Cov(z, x)
.

Suppose that Cov(z, u) is close to zero but not exactly zero (this is reasonable for empirical
work). Given a weak IV z, z is weakly correlated with x and then Cov(z, x) is also close to
zero. Then, the magnitude of the second term,

Cov(z, u)

Cov(z, x)
,

is not zero and cannot be ignored such that there exists a bias. Moreover, note that the
bias, Cov(z, u)/Cov(z, x), is a function of the degree of endogeneity because the bias may be
neglectable as Cov(z, x) increases.

Further, the bias may be larger than the OLS estimator. The OLS estimator is

β̂OLS = (
1

N

N∑
i=1

x2i )
−1(

1

N

N∑
i=1

xiyi).

Thus, it converges in probability to

β̂OLS
p→ β +

Cov(x, u)

Cov(x, x)
.

Then the ratio of bias between TSLS and OLS estimators is

β̂TSLS − β
β̂OLS − β

p→ Cov(z, u)

Cov(z, x)

Cov(x, x)

Cov(x, u)
=
Corr(z, u)

Corr(z, x)

1

Corr(x, u)
.
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So, the bias of β̂TSLS may be greater than the bias of β̂OLS if

Corr(z, u) > Corr(z, x)Corr(x, u).

In additoin, Staiger & Stock (1997) prove that the asymptotic distribution of (β̂TSLS − β) is a
ratio between two random variables which are both standard normally distributed and correlated
to each other. Since the asymptotic distribution is non-normal, the hypothesis testing would
fail.

3 Anderson-Rubin test

Consider again the model in section 2.1

y = xβ = x−kβ−k + xkβk + u

xk = zπ + v,

and test

H0 : β = γ

H1 : β 6= γ.

The procedure of Anderson-Rubin (AR) test is

(i) calculate y∗ = y − γxk

(ii) regress y∗ on instrument z
y∗ = zξ + w,

where w is the error term and ξ is the coefficient.

(iii) test if the coefficients on IV are all zero,

H0 : ξ = 0

H1 : ξ 6= 0

This test is equivalent to the test of H0 : β = γ. It is a F-test in small samples.

Recall that assumption T1, Cov(z, u) = 0. Then, under H0,

E(y∗z) = E((x−k + u)z) = 0, where xk |= z.

Thus, y∗ is uncorrelated with IV and the corresponding coefficients are zero under H0. The
intuition is that γxk is the endogenous part under the null, and the remaining part y∗ is then
exogenous so that it does not correlate with the error. Additionally, we can reorganize the
equations,

y∗ = x−kβ−k + (βk − γ)πz + (βk − γ)v + u.

Then, we use ξ̂ = (β̂k − γ)π̂ for AR-statistic instead of biased TSLS estimator β̂k,TSLS for

t-statistic. That is, ξ̂ or AR-statistic has more sufficient information for inference under the
null. Moreover, the asymptotic distribution of AR-statistic at the null is a χ2

s distribution of
some non-central parameters, where s is the number of IV. Then, AR-statistic is a F-statistic
in small sample size.
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4 Hypothesis testing and Power Function

Hypothesis testing is a procedure for selecting between statistical models. Suppose that we have
a simple linear regression model on a set of random variables (x, y),

y = a+ βx+ ε.

A statistical hypothesis is a proposed statement that narrows or restricts the model. This
statement is also defined as the null hypothesis, H0, which claims the distribution of random
variables. Against the restricted model, there is a broader claim called alternative hypothesis,
H1, which rivals the null hypothesis. For instance, the null hypothesis could be β = 0 and then
the compared alternative hypothesis is β 6= 0. The notation is

H0 : β = 0,

H1 : β 6= 0.

Since the null hypothesis and the alternative hypothesis are rivals and exclusive, only one of
them is true. To determine which hypothesis is true, a test is defined as a rule to accept or reject
the null. More specific, a test assigns a rejection region and an acceptance region for a test
statistic which derived from the assumed distribution under the null. Note that the rejection
region and the acceptance region are also exclusive and complementary to each other in the
sample space, since they are the spaces for the null and the alternative respectively. Here, the
test statistic is

t =
β̂ − 0

sβ̂
,

where sβ̂ is the standard error of the estimator. Besides, H0 is rejected if t ≥ t(0.975,N−1) and
t ≤ t(0.025,N−1) with significance level 0.05.

If the null hypothesis is true, the relevant test statistic is a t-distribution with (n−1) degree
of freedom given that the error ε is normally distributed. If the null is false, the test statistic
would be invalid or extreme such that it falls in the rejection region under the proposed null
hypothesis or t-distribution.

Since a test statistic is a probability distribution and the estimators are random variables,
we can find its confidence interval with some significance level. Thus, it is possible that we do
an incorrect inference and generate a false result. The following errors are defined:

Type I error: the null is true, but it is rejected.

Type II error: the null is false, but it is accepted.

The probability of correctly rejecting the null hypothesis is called the power of a test. Then,
when H1 is true, one subtracts the probability of Type II error is the power of a test. Fur-
thermore, the size or significance level of a test is defined by the probability of making Type I
error. Therefore, the value of power function is equal to the size when H0 is true. The textbook
example of power function is presented in figure 1, which is the t-test for H0: β = 0 under
strong IV and large sample size of 5000 with exogenous independent variable. As the above
discussion, the power function is one under H1, β 6= 0, and 0.05 under H0: β = 0.
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Figure 1: The textbook power function for t-test, under sample size of 5000 and strong IV

5 Numerical Study

5.1 Data Generating Process

To begin with, the data are randomly generated for Monte Carlo simulation setup using the
simple regression model without intercepts,

yi =βxi + ui

xi =πzi + vi,

zi ∼ N (0, 1), (u, v) ∼ N (0,

(
1 ρ
ρ 1

)
) for all i,

where ρ = Corr(x, u) = Corr(u, v) and it is also defined as the degree of endogeneity.
Given that R2 is the coefficient of determination for the first stage regression, R2 presents

the strength of IV. For this simple regression,

R2 = (Corr(z, x))2 = (
Cov(x, z)

σzσx
)2 = (

Cov(πz + v, z)

σzσx
)2

=
σ2z
σ2x
π2 =

1× π2

V ar(x)
=

π2

V ar(πz + v)
=

π2

π2 + 1
.

Then, we let

π =

√
R2

1−R2

to set up the degree of weakness for IV. Next, we implement this model with all combinations
of following specifications.

• degree of endogeneity: ρ ∈ {0.00, 0.50, 0.90, 0.99}

• strength of instrument: R2 ∈ {0.01, 0.05, 0.10, 0.20, 0.50}

• sample size: n ∈ {100, 200, 500, 1000, 2000}

• the coefficient of endogenous variable β: β ∈ [−5, 5]
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For each combination, we generate 2000 samples(or 2000 runs) of size n data and then estimate
β̂TSLS to find the bias and distribution. For hypothesis testing, we compute t-statistic to test
the null

H0 : β = 0.

Here, H0 is generally rejected if t-statistic is larger than 1.96 or less than −1.96 at significance
level 5%. Note that the data may be generated under H1 for the combinations which β 6= 0,

H1 : β 6= 0 or β = b, b ∈ [−5, 0) ∪ (0, 5].

5.2 Empirical Power and Size

For each replication of sample, we may or may not reject the null. In Monte Carlo method, the
power under H1 is calculated as

power ≡ the number of replications for which H0 is rejected

total number of replications
,

while the size of test under H0 (given H0 is true) is

size ≡ the number of replications for which statistic is in rejection region

total number of replications
.

As discussed in section 4, the size is equal to the power function when H0 is true, so we simply
calculate the power at β = 0 as the size. Thus, if the data is generated under the null, we
expect that the power is around 0.05 which is equal to size of test at a 5% significance level.
Additionally, if the data is generated under H1, the power should close to one.

5.3 Result

5.3.1 The bias and distribution of β̂TSLS

Initially, we simulate the distribution of β̂TSLS under small sample size and one IV. Figure 2
shows the result of one weak IV with sample size n = 100 and β = 0 under all degree of
endogeneity. It indicates that there exists bias (µ 6= 0) and the distributions are non-normal for
the cases of weak IV. Note that the distribution is independent of the degree of endogeneity.
Furthermore, the pattern is similar to the simulated distribution of the ratio between two normal
distributed random variables (figure 4). This is the evidence for which the asymptotic normality
of (β̂TSLS−β) breaks down. Moreover, as the sample size n increases, the bias converges to zero
and the distribution is more close to normal (see figure 3). It seems that this result conflicts the
theory in section 2.2. However, there exits some skewness and this simulation is the simplest
model with only one endogenous variable and one IV, so the theory still could be true generally.
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Figure 2: The distribution of β̂TSLS for R2 = 0.01, n = 100, β = 0.

Figure 3: The distribution of β̂TSLS for R2 = 0.01, n = 2000, β = 0.

Figure 4: The simulated distribution of two standard normal distributed random variables.
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Figure 5: The power of t-test for sample size of 100

Table 1: Size table for t-test.

(a) sample size n = 100

Exogenous Endogenous

ρ = 0.00 ρ = 0.50 ρ = 0.90 ρ = 0.99

Weak IV R2 = 0.01 0.0005 0.0190 0.1705 0.1880

R2 = 0.05 0.0060 0.0460 0.0950 0.1085

R2 = 0.1 0.0135 0.0405 0.07457 0.0995

R2 = 0.2 0.0305 0.0455 0.0685 0.0705

Strong IV R2 = 0.5 0.0550 0.0580 0.0565 0.0610

(b) The worst case, R2 = 0.01, for each sample size.

Exogenous Endogenous

sample size ρ = 0.00 ρ = 0.50 ρ = 0.90 ρ = 0.99

n = 100 0.0005 0.0190 0.1705 0.1880

Weak IV n = 200 0.0035 0.0350 0.1165 0.1520

R2 = 0.01 n = 500 0.0040 0.0345 0.0875 0.1025

n = 1000 0.0105 0.0460 0.0775 0.0970

n = 2000 0.0585 0.0515 0.0385 0.0480

5.3.2 The power and size for the test H0 : β = 0

Next, we simulate the power function to check that the inference is indeed unreliable when IV
are dramatically weak. Figure 5 shows the worst result with small sample size n = 100 and
weak IV R2 = 0.01. In the figure, the degree of endogeneity increases as from left to right.
Comparing to figure 1, the power function shifts down so that it has smaller power and higher
probability of failing to reject the null when, say, β = 4. Besides, it shifts to left as the degree
of endogeneity increases. This is reasonable since the bias is positive rather than negative,
β̂TSLS − β > 0, in figure 2.

The size of tests under one IV is summarized in table 1. Table 1a shows that when IV is
weak (R2 = 0.01) and the degree of endogeneity is high(ρ = 0.99), the size is greater than 0.15
under small sample size n = 100. Table 1b indicates that the size approximates to 0.10 even
with the sample size of 1000. These large sizes, which are greater than 5%, suggest that we
may fail to accept the null when IV are weak. Moreover, table 1b summarizes that the size is
decreasing in sample size, so this problem can be improved by large sample size.
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5.3.3 AR test Numerical Result

The worst case of power function for AR-test simulation is presented in figure 6 of which IV
is weak and sample size is small. It is clear that the power is asymmetric under high degree
of endogeneity. When β is much greater or less than the null value, say β = 4 > 0, the power
is around or less than 0.2 so that there is a high probability of 80% for falsely accepting the
null. Also, the power at β = −1.5 is greater than that of β = 4 (the rightest plot of figure 6).
These results agree with Marmer (2017) which proves that the finite probability of detecting
big deviation from the null, small β − 0, would cause the power at small deviation to surpass
the power at large deviation. Nevertheless, the power at β = 0 or the size is close to 0.05
for all strength of IV, all degree of endogeneity and all sample size (see table 2). Thus, the
probability of type I error is corrected although the probability of type II error may increases.
Moreover, figure 8 and figure 7 under large sample size indicate that we can improve the power
by increasing the sample size even though the power may slightly worse than that of t-test when
the deviation from null (for instance, β − 0 = 0.5) is small.

Figure 6: The power of AR-test under one weak IV R2 = 0.01 and small sample size n = 100.

Figure 7: The power of AR-test under one weak IV R2 = 0.01 and large sample size n = 1000.

Figure 8: The power of AR-test under one weak IV R2 = 0.01 and large sample size n = 5000.
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Table 2: Size table for AR-test.

(a) Sample Size n = 100

Exogenous Endogenous

ρ = 0.00 ρ = 0.50 ρ = 0.90 ρ = 0.99

Weak IV R2 = 0.01 0.0580 0.0545 0.0565 0.0415

R2 = 0.05 0.0535 0.0560 0.0560 0.0555

R2 = 0.1 0.0570 0.0505 0.0500 0.0575

R2 = 0.2 0.0425 0.0525 0.0525 0.0610

Strong IV R2 = 0.5 0.0515 0.0500 0.0585 0.0470

(b) The worst case, R2 = 0.01, for each sample size.

Exogenous Endogenous

sample size ρ = 0.00 ρ = 0.50 ρ = 0.90 ρ = 0.99

n = 100 0.0580 0.0545 0.0565 0.0415

Weak IV n = 200 0.0610 0.0510 0.0430 0.0480

R2 = 0.01 n = 500 0.0485 0.0420 0.0520 0.0520

n = 1000 0.0460 0.0515 0.0600 0.0475

n = 2000 0.0425 0.0375 0.0420 0.0495

5.3.4 More Extreme Cases of Many Weak IV under the Specifications in Angrist
& Krueger (1991)

For cases of more weak IV, we set the model as section 5.1 with k IV,

yi =βxi + ui

xi =πz1,i + πz2,i + ...+ πzk,i + vi,

π =

√
R2

k(1−R2)

z1,i, z2,i, ..., and zk,i ∼ N (0, 1) and are i.i.d..

where all the other variables are assigned as section 5.1.
We simulate the power and size under this model and the specifications in Angrist & Krueger

(1991) to imitate the more extreme empirical works. This extreme example has large sample
size and many number of weak instruments. Angrist & Krueger (1991) have almost 200,000
observations and 200 instruments in their study. To set up doable specifications in computer,
we have a compromise and focus on the following parameters,

• number of instruments: k ∈ {5, 10}

• sample size: n ∈ {500, 1000}

The distribution of β̂TSLS under 10 IV and sample size of 1000 is presented in figure 9.
When β is zero (figure 9a), the mean of β̂TSLS is greater than zero; while, β̂TSLS has a mean
around zero if beta = −0.48 (figure 9b). This suggest that β̂TSLS has a positive bias.

Figure 10 shows the result of 10 weak IV R2 = 0.01 and sample size of 1000. The power is
asymmetric around β = 0 when explanatory variable is endogenous, ρ ≥ 0.9. That is, comparing
to 1, the power function shifts to left as the strength of endogeneity increases. The lowest power
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(a) β = 0. (b) β = −0.48.

Figure 9: Distribution of β̂TSLS under 10 weak IV, R2 = 0.01, sample size of 1000

Figure 10: The power under 10 weak IV with R2 = 0.01, sample size of 1000.

under ρ = 0.99, the rightest plot, is at around β = −0.48 for which β̂TSLS has mean of zero
in figure 9b. Then, the positive bias explains the left shift of power function. Moreover, when
the true β is zero, the figure indicates that the power is around 0.9 under highly endogeneity,
ρ = 0.99. Yet, the power function does shift down versus the case of small sample size and one
IV.

The size of test with sample size 1000 and five or ten IV are summarized in table 3. We can
observe few results from the table. Firstly, the size are generally greater than that of one IV
given R2 ≤ 0.2 and ρ ≥ 0.5. In the most extreme instance, there is 85% of probability such that
we falsely reject the null under ρ = 0.99 and R2 = 0.01. Second, the size grows significantly as
the number of IV increases from five to ten. Third, even with strong IV R2 = 0.2, the size is
greater than 5% if we include ten weak IV. Fourth, the size increases exponentially in ρ. This
is reasonable since the bias is increasing in the degree of endogeneity. Finally, even in large
sample size of 1000, the size is relatively high under weak IV. Recall that under one IV, the size
of t-test can be improved by large sample size. However, under 10 IV, the size improvement of
increasing sample size is insignificant.
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Table 3: Size table of t-test under many IV.

(a) 5 IV, Sample Size n = 1000

ρ

Exogenous Endogenous

R2 0.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Weak 0.01 0.0230 0.0325 0.0555 0.0935 0.1330 0.1600 0.2400 0.2865 0.361 0.4270

0.05 0.0435 0.0520 0.0515 0.0535 0.0715 0.0830 0.1020 0.0975 0.129 0.1360

0.1 0.0355 0.0495 0.0440 0.0540 0.0475 0.0645 0.0665 0.0805 0.075 0.1040

0.2 0.0475 0.0510 0.0540 0.0490 0.0635 0.0545 0.0555 0.0535 0.057 0.0675

Strong 0.5 0.0530 0.0475 0.0470 0.0490 0.0415 0.0535 0.0545 0.0545 0.052 0.0580

(b) 10 IV, Sample Size n = 1000

ρ

Exogenous Endogenous

R2 0.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Weak 0.01 0.0300 0.0515 0.1050 0.1645 0.2625 0.3390 0.4745 0.6075 0.7375 0.8500

0.05 0.0455 0.0520 0.0680 0.0885 0.1135 0.1485 0.1855 0.2415 0.2685 0.3100

0.1 0.0505 0.0570 0.0560 0.0755 0.0900 0.0935 0.1185 0.1255 0.1730 0.2065

0.2 0.0500 0.0505 0.0550 0.0660 0.0655 0.0785 0.0755 0.0970 0.0990 0.1060

Strong 0.5 0.0515 0.0490 0.0395 0.0500 0.0475 0.0520 0.0600 0.0520 0.0670 0.0680

5.3.5 AR test under Many IV

We further simulate the AR test under the above more extreme specifications and the following
the model

regress (y − 0× x) on z1, z2, z3, ..., zk.

The statistic is F-statistic of F-test

H0 : all coefficients of z1, z2, ..., and zk are zero.

We first focus on the power function under the weak IV. Figure 11 presents the power of
AR test with sample size of 1000. The power is asymmetric and less than 0.4 when β = 4. The
probability of type II error is relative high comparing that of one IV. Generally, it has worse
power under 10 IV than that of one IV in figure 7 given the same large sample size. However,
the size is close to zero under the null. We then increase the sample size further. Figure 12
shows the power function under 10 IV and large sample size of 5000. The power is close to one
if |β| is large enough, say, two. Then, we can conclude that the trade-off is insignificant in much
larger sample size. Note that in figure 12, the power is still worse than the textbook example
as 0 < β < 2. We can improve this further by increasing the sample size such that it is more
than 1000 times as many as the number of IV.

We further examine the size table. Table 4 shows the size of AR statistic for the most
extreme case with 10 IV and sample size n = 1000. For other specifications, the results are
similar. It is obvious that the size are all around 0.05. Thus, we can say that AR test reduces
the probability of type I error to 0.05 at significance level 5%.
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Figure 11: The power for AR-test with R2 = 0.01, sample size of 1000 and 10 IV.

Figure 12: The power for AR-test with R2 = 0.01, sample size of 5000 and 10 IV.

Table 4: Size table for AR-statistic with ten IV and sample size n = 1000.

Exogenous Endogenous

ρ = 0.00 ρ = 0.50 ρ = 0.90 ρ = 0.99

Weak IV R2 = 0.01 0.0540 0.0535 0.0420 0.0495

R2 = 0.05 0.0400 0.0460 0.0495 0.0450

R2 = 0.1 0.0445 0.0440 0.0535 0.0500

R2 = 0.2 0.0670 0.0495 0.0550 0.0535

Strong IV R2 = 0.5 0.0500 0.0495 0.046 0.0495

5.4 Practical Guide

In practice, if we have dramatically many observations and meany weak IV as Angrist & Krueger
(1991), then I suggest use AR-test for inference. First, AR-test is easy to implement. If AR-
statistic gives different result versus t-test, then we would discover the existence of bias. Then,
we may consider to forgo some weak IV which can be identified by F-test in 2.2. If we do not
remove weak IV, we can go back and trust AR-test. The reasons are that we may not know the
degree of endogeneity, but the distribution of AR-statistic is independent of endogenity so that
the only concern is the strength of IV. However, since we have many observations comparing to
the number of IV, the power of AR-test is comparable to the textbook power function.

6 Conclusion

This project first confirms that TSLS estimator under weak is non-normal and biased. Moreover,
given small sample size, t-statistic has incorrect size of test under one or many weak IV, while
AR-test can improve the size but sacrifices the power. Furthermore, increasing sample size
can only improve the size of t-test under one weak IV but hardly improves that under many
weak IV. On the other hand, AR-test has correct size for all specifications but may have worse
power in small sample. However, the power of AR-test is growing in sample size. Then, I
recommend AR-statistic under large observations if the degree of endogeneity and strength of
IV are unknown.
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