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Abstract. One of the most well-known "laws" in economics is Gibrat’s Law of
proportionate effect. Concerning firm dynamics, Gibrat’s law predicts that firm
growth will be independent of its size. While Gibrat’s Law is frequently used as a
benchmark in models of industry dynamics, the majority of recent empirical liter-
ature demonstrates a systematic departure from Gibrat’s Law: small firms exhibit
higher volatility than larger ones. This paper aims to provide an explanation for
this systematic deviation. Utilizing a hierarchical production network, we demon-
strate that upstream firms, which tend to be smaller, display more volatility than
downstream firms. The model also offers an explanation for the observation that
the firm size distribution follows a power law.
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1. Introduction

One of the most debated statistical regularities in industrial dynamics is Gibrat’s
Law, which predicts that the growth rate of a firm is independent of its size (Gibrat,
1931, Sutton, 1997). Gibrat’s Law allows a firm’s growth to be viewed as a stochastic
process, which brings in heterogeneity. The law also successfully explains the skewed
distribution for firm size. These properties make Gibrat’s Law become a prevalent
assumption or a stylized fact in theoretical work (Ijiri and Simon, 1964, Lucas, 1978).
For instance, Gibrat’s Law plays a crucial role in explaining the power law of firm sizes
and the tent-shaped distribution of firm growth (Simon and Bonini, 1958, Gabaix,
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2009, Fu et al., 2005). Gabaix and Landier (2008) model CEO pay by assuming an
exogenous distribution of firm sizes from a random growth process.

However, the empirical tests for Gibrat’s Law have generated controversy. It has been
observed that small firms exhibit faster growth rates or greater volatility than their
larger counterparts, leading to the rejection of Gibrat’s Law, especially for down-
stream firms.1 For instance, in a study of Italian firms, Grazzi and Moschella (2018)
finds a negative size-growth relationship, even when accounting for firm age. Never-
theless, it is worth noting that the breakdown in adherence to Gibrat’s Law appears
to occur systematically, suggesting that it may still hold for large firms.

Recently, economists have discovered the breakdown of Gibrat’s Law for production
networks. Guilmi and Fujiwara (2020) and Hiromitsu and Wataru (2020) both observe
in the Japanese production networks that small firms experience higher fluctuation.
Hiromitsu and Wataru (2020) find that the upstream firms tend to be smaller than
those firms in the other portions of the network. Since upstream firms tend to be
small, Guilmi and Fujiwara (2020) argue that the upstream firms also have higher
volatility than the downstream firms. Further, Hiromitsu and Wataru (2020) observe
that firms that follow a power law are usually not at the upstream level of produc-
tion chains.2Since Gibrat’s Law explains the power-law distribution, it implies that
upstream firms depart from Gibrat’s Law.

Overall, their observation suggests that a small firm’s size and growth may be affected
by its relative position or the hierarchical structure of a production chain. Motivated
by these studies, this paper attempts to explain the breakdown of Gibrat’s Law for
upstream firms and the power-law distribution of firm sizes for downstream firms by
a production network model.

1Hall (1987), Evans (1987a),Evans (1987b)„ Dunne and Hughes (1994), Almus (2000), Calvo
(2006), Falk (2008), Daunfeldt and Elert (2013), Oke (2018) and Aydogan and Donduran (2019)
find that firm growth and firm size are negatively correlated, considering small firm or aggregated
data. Hall (1987) and Dunne and Hughes (1994) document that the growth of small firms is more
volatile growths than that of large firms.

2Guilmi and Fujiwara (2020) and Hiromitsu and Wataru (2020) also demonstrate that the distri-
bution of large firms’ sizes is Pareto, while that of small firms’ sizes is not. This breakdown of Pareto
distribution among small firms is a well-known observation (See e.g., (Saito et al., 2007, Fujiwara
and Aoyama, 2010, Almsafir et al., 2015)).
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This paper establishes a balanced production chain and shows both the existence
and uniqueness of equilibrium. We discover that the hub-like network exhibits robust
features such that the prices are increasing in transaction costs, and subcontractors’
sizes grow as they progress to downstream levels. Additionally, simulations reveal
that the production chain length decreases in transaction costs but increases with the
degree of decreasing return to management. These properties enable us to study the
impact of cost shocks on both price and the structure of the production network.

Furthermore, our findings indicate that when assembly costs exponentially increase
with the task, the firm sizes of the subcontractors follow a power law in each produc-
tion chain. In addition, if home producers experience higher volatility in technology
compared to subcontractors, Gibrat’s Law breaks down. In other words, when as-
sembly technology is more stable in the short run, the home producers at the most
upstream level exhibit greater volatility in firm sizes than downstream subcontrac-
tors. If we further examine the economy across many production chains, it appears
that the upstream or small firms experience more fluctuations than downstream or
large firms.

Moreover, we show that it is possible to identify a locally optimal number of suppliers,
although it may be unrealistic to be fixed. Finally, this paper extends a balanced
production network to a more realistic model that allows firms to choose an optimal
number of suppliers when they subcontract. We show that the extended network also
has a unique equilibrium and exhibits robust comparative statics.

This paper modifies the framework with multiple upstream partners from Kikuchi
et al. (2018), Yu and Zhang (2019) and Kikuchi et al. (2021). They consider a per-
fectly competitive economy where all firms are ex-ante identical.3 Facing prices, all
firms minimize the home producing costs and outsourcing costs, which are subject
to transaction costs and input prices. There exists a trade-off between intra-firm
coordinate costs and inter-firm transaction costs, as proposed by Coase (1937) and
Williamson (1979). They address the fact that the external transaction cost encour-
ages firm growth while the intra-firm coordination cost discourages it. Hence, the

3Some features of a multi-sourcing strategy are that it could mitigate the risk of suppliers’ failure,
allow firms to obtain broader supplier capabilities, and encourage competition among suppliers
(see, e.g., Jin and Ryan (2012)). Considering the competition, our model also assumes that the
intermediate market is perfectly competitive as Fally and Hillberry (2018) and firms are ex-ante
identical.
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point where the cost of managing an additional task is equal to the cost of acquiring
a similar input or service from the market pins down the firm’s boundary. Kikuchi
et al. (2018) construct the pricing function capturing the above concept and compute
the equilibrium prices for the whole chain by the recursive method. They also show
the existence of equilibrium but do not provide its uniqueness.

The model of Kikuchi et al. (2018) has the advantage that the equilibrium exists
and is tractable by dynamic programming technique, so it pins down the firm sizes in
each production stage endogenously. In their model, the firm’s size increases as it goes
downstream levels. Therefore, their framework can capture some realistic features.
Moreover, they generate heterogeneity by the endogenous network but with ex-ante
identical agents. This feature helps us to understand how the network structure
affects firm-size distribution.

Building on Kikuchi et al. (2018), we construct the hub-like production network.
Two reasons make us concentrate on the hubs: they render the network even more
tractable, and some literature suggests that the hub-like firms are the key to forming a
power-law distribution.4 Unlike Kikuchi et al. (2018), we let each firm make a binary
decision on outsourcing, rather than decide the range of home-producing tasks, to
focus on the hub-like production network. In this case, it can be shown that the
equilibrium not only exists but also is unique. Moreover, it successfully explains the
power law for firm size.

In our model, the structure of the network is more tractable than Kikuchi et al.
(2018). In detail, subcontractors divide the allocated task into a fixed number of
multiple pieces of sub-module and outsource each sub-module to upstream suppliers.
Subcontractors have to pay the assembly cost and transaction cost. Then, the min-
imum number of suppliers is two since the transaction and assembly costs prevent
firms from outsourcing to only one supplier. Therefore, only hubs exist in the pro-
duction network except for the upstream level. In other words, home producers only
exist in the most upstream.

4For instance, Bernard et al. (2019) suggests that the number of suppliers for a firm is proportional
to its firm size. The hub also plays an important role in transmitting shocks. Acemoglu et al. (2012)
imply that super large suppliers with multiple customers can have a significant impact on aggregate
shocks. Carvalho (2014) underscores that hub-like units provide shortcuts or act as influential
conductors such that they help shocks propagate throughout the economy.



5

Related Literature. Guilmi and Fujiwara (2020) offer an explanation for the break-
down of Gibrat’s Law among upstream firms, attributing it to amplified demand
shocks along a production chain. However, both the production network and the
prices are exogenous in their model, meaning the network is randomly given, and the
price is integrated into stochastic shocks. Hence, their model is not able to study the
impact of the shape of networks and cost shocks. Furthermore, Guilmi and Fujiwara
(2020) do not explain explicitly why the sizes of the downstream or large firm follow
a power law that Gibrat’s Law holds for downstream firms in their model.

Nevertheless, the higher volatility among small firms documented in Guilmi and Fu-
jiwara (2020) does not necessarily imply that Gibrat’s Law holds for large firms and
breaks down for small firms. It could be the case that the breakdown occurs for both
small and large firms. Therefore, if Gibrat’s Law is rejected, it would be better to
explain the power-law distribution without it. In response, this paper provides one
origin of the power-law distribution of firm sizes without Gibrat’s Law and ex-ante
heterogeneity. To simplify the model, we focus on a balanced and hub-like produc-
tion network, in the sense that firms have a fixed number of multiple suppliers if they
choose to outsource. We find that the hub-like network can generate a power-law
distribution of firm size for subcontractors and illustrate the departure for upstream
firms.

Another reason for the interest in the breakdown of Gibrat’s Law is its connection
to the development policy. If small firms exhibit higher growth rates, policymakers
may be motivated to invest in young and innovative small firms for economic de-
velopment.5. While small firms may have to do with economic development, large
firms could impact the business cycle. The power law of the firm size distribution is
influential in the research of aggregate shock. For example, Gabaix (2011) shows that
firm-level idiosyncratic shocks can translate into aggregate fluctuations when the firm
size distribution has a heavy tail, and the largest firms contribute disproportionately
to aggregate output.6 Moreover, Carvalho and Grassi (2019) show that the dispersion

5For example, a policymaker would support young small firms with high R&D intensity by relaxing
financial constraints, since they can achieve significantly higher innovative sales (Schneider and
Veugelers (2010)) Also, small firms have higher job creation rates than large firms (Schreyer (2000)).

6Gabaix (2011) shows that when the company size has infinite variance, the aggregate volatility
decays at a rate slower than 1/

√
N such that the aggregate fluctuation is substantial even if N is

large, where N denotes the number of firms in the economy. The fat tail breaks the central limit
theorem, and the idiosyncratic shocks remain on aggregate output.
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of firm sizes affects the variance of aggregate output in a Hopenhayn economy, which
implies that large firms’ dynamics induce significant macro-level fluctuations.

It also has been proved that the shape of the production network affects aggregate
shock. Acemoglu et al. (2012) show how weighted out-degree and second-order inter-
connections of the inter-sectoral network affect aggregate volatility, where the aggre-
gate output is a linear combination of sectoral shocks.7 If the network is asymmetric,
then the aggregate volatility can not be averaged out.8 Carvalho (2014) stresses that
the shape of the network influences the propagation of sectoral shocks, where the
idiosyncratic shock in a single sector propagates along the chain and then generate
aggregate shocks.

Similarly, Tahbaz-Salehi et al. (2016) illustrate that the rate at which aggregate
volatility decays is determined by the structure of the input-output network as the
economy becomes more disaggregated. They demonstrate how network interactions
can propagate and amplify microeconomic shocks. Baqaee (2018) shows that the net-
work influences the amplification and pattern of shocks. In the study by Bigio and
La’O (2016), a network model with financial constraints reveals that shocks propagate
idiosyncratic shocks and manifest as aggregate shocks through two channels: a fall in
total factor productivity and an aggregate labor wedge distortion. Consequently, if
our concern is economic growth and stability policy, it becomes imperative to under-
stand the existence of a power-law distribution of firm sizes and the reason behind
the breakdown of Gibrat’s Law.

The real-world production network is intricate and challenging to analyze compre-
hensively. However, there are two types of networks that serve as approximations to
real-world complexities. Baldwin and Venables (2013) describe two highly simplified
models: snakes and spiders. A snake represents a sequence of production stages, with
value-added from the upstream stage to the downstream stage. Conversely, a spider
is a process where numerous components (limbs) converge from the upstream stage
to be assembled into a final output. The spider model results from the unbundling

7The weighted out-degree is the output share of one sector in the production network which can
be computed from the input-output matrix. The weighted out-degree is higher when the supplier is
large. The second-order interconnection is higher when there is a clustering of significant sectors in
the network.

8In the sense that the corresponding weighted out-degree sequence or second-order degree sequence
have power tails.
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process, which breaks down production tasks into various sub-modules All production
networks can be viewed as a combination of snakes and spiders.

Some research employs snakes as a model to investigate production behavior, such
as integration and specialization. For example, Antràs and Chor (2013) show that
the incentive to integrate suppliers depends on the relative position in a sequential
chain. They predict that the average demand elasticity faced by final-good producers
affects integration choices. Costinot et al. (2012) study wage inequality and vertical
specialization within countries with a sequential feature.9

In reality, firms may engage with multiple partners. This paper specifically con-
centrates on spiders or hub-like networks. Acemoglu et al. (2012) and Barrot and
Sauvagnat (2016) present a network of U.S. firms, wherein the majority of firms and
sectors adopt the "star network" structure. Moreover, the result of a sequential chain
may not hold if the assumption of a sequential structure is dropped. For example,
Fattorini et al. (2017) find that demand elasticity is not a significant determinant for
integration choices, contradicting the prediction of Antràs and Chor (2013) when the
assumption of a unique linear sequence of production stages is removed. They argue
that an input participates in multiple stages of production, but not only a single
stage as a sequential chain. Therefore, this paper focuses on the more realistic spider
networks.

Our model endogenously determines the equilibrium price and can analyze cost shocks
under a multi-sourcing strategy. The model exhibits the price co-movement through
the input-output network. Input-output linkages generate price co-movement and
inflation synchronization, where the local cost shocks could be translated into global
inflation (Antoun de Almeida, 2016, Auer et al., 2017, Bilgin and Yilmaz, 2018, Auer
et al., 2019, Kamber and Wong, 2020).

This paper also explores how transaction costs impact the network. As transaction
costs influence firm boundaries, the structure of the production network depends
on both transaction costs and production costs. Aral et al. (2018) indicate that

9The other examples are: Costinot et al. (2013) study the sequential chain subject to failure and
the connection between the degree of specialization and the stage of the supply chain. They show
that countries with lower probabilities of making mistakes specialize in later stages of production,
with a continuum of sequential tasks produced in countries that are themselves sequentially ordered
in equilibrium. Levine (2012) studies that the trade-off between specialization and failure determines
the optimal chain length, where a longer chain is more fragile.
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coordination information technology reducing coordination and communication cost,
which is one of transaction cost, is correlated with the number of suppliers, while the
vendor-specific I.T. is associated with fewer suppliers. Boehm and Oberfield (2020)
imply that the cost of contract enforcement affects the firms’ outsourcing decision
and then distorts the economy. Recent economic shocks have significant impacts on
transaction costs. For instance, the trade war between China and the U.S. (Amiti
et al., 2019, Fajgelbaum et al., 2020). Another example is the COVID-19 pandemic.
Barua (2020) and Das (2020) point out that the causes the logistic problem and
increases transportation costs. In our framework, the transaction cost is completely
passed through to the price of the final good, which is compatible with Amiti et al.
(2019).

Other related literature investigates whether the positions of firms affect their perfor-
mance. For example, Mahy et al. (2019) and Gagliardi et al. (2019) find that Belgian
firms’ productivity increases on average as they go upstream levels and workers in
more upstream firms obtain higher wages in the Belgian manufacturing industry,
respectively. Chen (2017) find that the upstream industries have more severe wage
inequality than downstream industries in China manufacturing data, where the down-
stream industries tend to do processing and assembly work. Szymczak et al. (2019)
observe that workers in Central and Eastern European countries earn more when
their industries are at either the beginning or the end of the production chain than in
the middle. These papers demonstrate the importance of the position and structure
of the network.

Section 2 establishes a model of a balanced production chain. It also presents the
proofs for existence and uniqueness and discusses some robust properties, including
comparative statics. Section 3 shows the distribution of firm sizes of subcontractors
and the departure of Gibrat’s Law for upstream firms. Section 4 provides an extended
model that allows firms to choose an arbitrary number of suppliers. The code can be
found at github.com/chien-y/Departure_Gibrat_law.

2. Model

A supply chain produces a single unit of the final good in a perfectly competitive
market. Positioned at the most downstream, there exists one and only one firm
that sells this final good to consumers. Suppose that all firms are ex-ante identical,

https://github.com/chien-y/Departure_Gibrat_law
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indicating that they share the same cost functions for both in-house production and
assembly work.

Within the production chain, the firms collaborate to execute a continuum of tasks
[0, 1] to produce the final good. The interval [0, 1] serves as a normalized measure
of tasks required to produce one unit of good. To elaborate, the measure of tasks is
denoted as ℓ ∈ [0, 1], representing the allocation of tasks in an outsourcing contract.

Moreover, each firm in the supply chain has a total of κ > 1 upstream partners.
Upon receiving an allocation of tasks ℓ, each firm makes a strategic decision between
in-house production and subcontracting the tasks ℓ to κ suppliers. In the case of in-
house production, the firm incurs a production cost c(ℓ). Conversely, if the firm ops to
be a subcontractor, it divides the tasks into κ portions and outsources each portion,
equivalent to ℓ/κ units, to its upstream partners. Subsequently, the subcontractor is
responsible for the assembly work, combining the κ pieces of components, incurring
an assembly cost denoted as α.

Furthermore, when firms engage in the sell of intermediates or final goods, they are
obligated to pay the transaction costs τ .10 The transaction costs and the cost function
satisfy the following assumptions.

Assumption 2.1. The transaction cost τ satisfies 0 < τ < 1.

Assumption 2.2. The cost function c : [0, 1] → R is convex, c(0) = 0 and c′(0) > 0.

Under Assumption 2.2, given convexity of the cost function and the derivative c′(0)

as limh↓0 c(h)/h, the cost function is strictly increasing and non-negative.

Additionally, we assume that the assembly cost increases with the allocated tasks ℓ

in Assumption 2.2. Two intuitions support this assumption. Firstly, if ℓ not only
measures the number of tasks but also the diversity of tasks, a higher ℓ implies
increased variety, leading to heightened complexity.11 This increased complexity, in
turn, results in higher assembly costs. Secondly, even though firms consistently divide

10It matters little whether the transaction is paid by the buyer or the seller in the model. The
transaction costs include search and information costs, bargaining and decision costs, and contract
enforcement costs (Dahlman, 1979).

11This concept is similar to ElMaraghy et al. (2013), Hu et al. (2008) and Hu et al. (2011). They
show that the product variety complicates the design and operation of the assembly system and
decreases the efficiency and quality of production.
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tasks into κ pieces and subcontract κ/ℓ tasks to suppliers, a greater variety of tasks
introduces more possibilities for task combinations. Firms need to strategically plan
the task division and assembly line decision, incurring costs that rise with the task
variety ℓ. Consequently, the assembly costs are proportional to the variety or quantity
of tasks, making the assumption reasonable.

Specifically, we further assume that the assembly cost takes the form bℓq, where
q ⩾ 0, b represents the efficiency for assembly work and q captures the return to scale
of management.

Assumption 2.3. The assembly cost is α(ℓ) := bℓq for some q ⩾ 0 and b > 0.

In Assumption 2.3, it is permissible for the assembly cost function to be concave. The
idea stems from the concept that labor can specialize in the assembly line, resulting in
an increasing return to scale for assembly work. Aizcorbe (1992) illustrates this with
an example that an automobile assembly plant experiences an increasing return to
labor in the short run, attributed to the specialization of tasks. Thus, the assumption
allows for the assembly cost to exhibit concavity in contrast to the convex nature of
the production cost.

Given these assumptions, each firm in the chain receives a contract assigning it ℓ tasks
to complete. The firm then minimizes costs by deciding between home production and
subcontracting. If the firm opts for home production, the cost is c(ℓ). Conversely, if
the firm chooses to subcontract, the cost becomes κp(ℓ/κ)+α(ℓ) for purchasing inputs
from κ suppliers and conducting the assembly work, where κ = 2, 3, . . . , and each
supplier completes ℓ/κ fraction of tasks. Subsequently, accounting for the transaction
costs τ ∈ (0, 1) associated with selling the intermediate inputs, the profit is given by

(1− τ)p(ℓ)−min{κp(ℓ/κ) + α(ℓ), c(ℓ)}

for each ℓ ∈ [0, 1] and κ ∈ 2, 3, . . . . Note that if κ = 1, firms do not have the incentive
to subcontract (choose the first term inside the minimum function), since all firms
have identical costs and the transaction costs are larger than zero. This implies that
it must be κ > 1.

Let δ = 1/(1− τ). The parameter δ represents the transaction cost if buyers instead
of sellers bear it. Since the market is perfectly competitive, firms have zero profit in
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equilibrium. Hence, the pricing equation solves

p(ℓ) := δmin

{
κp

(
ℓ

κ

)
+ α(ℓ), c(ℓ)

}
. (1)

2.1. Equilibrium of Production Chain. Under the equilibrium price (1), the
structure of the supply chain is as follows. At the most downstream level, indexed
level 1, there exists a single firm that receives a task allocation (ℓ = 1). If this firm
chooses to subcontract, then there are κ firms in the next upstream level, indexed
level 2, since the number of suppliers is fixed at κ in the model. All firms at level
2 receive ℓ = 1/κ units of task allocations. Again, if the firms at level 2 choose to
subcontract, then there are κ2 firms at level 3, and each supplier at level 3 implements
1/κ2 units of tasks. Therefore, by induction, there are κn−1 number of firms at level
n ⩾ 1, and each firm at level n implements κ1−n units of tasks. See Figure 1 for the
visual structure.

Moreover, if m < ∞ is the level index for the most upstream level of the chain, there
are 1 + κ+ · · ·+ κm−1 = (κm − 1)/(κ− 1) firms in the chain.

An allocation of tasks ℓ := {ℓi} is called feasible if there is m ∈ N such that i =

1, · · · , (κm − 1)/(κ− 1) and ℓi = κ1−n for (κn−1 − 1)/(κ− 1) < i ⩽ (κn − 1)/(κ− 1)

for some integer 1 ⩽ n ⩽ m. Here, the integer m defines the length of the production
chain. If firm i at level n ⩽ m receives a feasible allocation, its allocated measure of
tasks is κ1−n. The length of the chain m and the length of sequence {ℓi} are finite
for a feasible allocation.

tasks firms
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Figure 1. The structure of a balanced production chain. Take κ = 3

for example.
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Given a feasible ℓ with length m ∈ N, the profit to firm i with the outsourcing or
home production costs (1) is

πi := (1− τ)p(ℓi)−min{κp(ℓi/κ) + α(ℓi), c(ℓi)}, (2)

for ℓi ∈ ℓ, where the revenue is (1 − τ)p(ℓi) with transaction cost τ ∈ (0, 1). Define
the set of all possible tasks by D := {κ−n : n ∈ N ∪ {0}}.

Definition 2.1. Given a price function p : [0, 1] → [0,∞), a feasible allocation of
tasks ℓ = {ℓi} with length m ∈ N and the corresponding profits {πi} defined by (2),
a tuple (p, ℓ) is called an equilibrium if

(1) p(0) = 0,

(2) (1− τ)p(ℓ)−min{κp(ℓ/κ) + α(ℓ), c(ℓ)} ⩽ 0, for all ℓ ∈ D, and

(3) πi = 0 for all i.

Condition (1) in definition 2.1 excludes the possibility of positive profits for suppliers
providing initial inputs, considering c(0) = 0. Moreover, condition (2) ensures that
no firm in the supply chain has an incentive to deviate from its decision, and inactive
firms are unable to extract positive profits. Furthermore, given the assumption of
perfect competition in the market, all firms in the chain are expected to have zero
profits, thus establishing condition (3).

2.2. Existence and Uniqueness of Equilibrium. In this section, we show both
the existence and uniqueness of equilibrium. A computational method is also pro-
vided. The proofs in the following sections are all presented in Appendix A.

Define the set of price functions by P := {p : D → R+ : δc′(0)ℓ ⩽ p(ℓ) ⩽ δc(ℓ),∀ℓ ∈
D}. We will show that there is a unique equilibrium price in P . Define operator T

by

Tp(ℓ) := δmin

{
κp

(
ℓ

κ

)
+ α(ℓ), c(ℓ)

}
. (3)

where ℓ ∈ D and p : D → R+. The operator T is analogous to a Bellman operator
with respect to the price function (1). If T has a fixed point, that fixed point is also a
solution to the price function (1) by its definition. Define x̄ := sup{x ∈ (0, 1] : c′(x) ⩽

δc′(0)} for the following proposition. The next proposition shows both the existence
and uniqueness of the fixed point of T .
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Proposition 2.1. If Assumption 2.1, 2.2 and 2.3 hold, the following statements are
true.

(a) T is a self-map on P.

(b) T has a unique fixed point p∗ ∈ P.

(c) p∗ is a unique solution to (1).

(d) p∗ can be computed by finite iterations: p∗ = T np for all n ⩾ 1− ln x̄/ lnκ and
any p ∈ P

(e) Under p∗, firms always choose to produce in-house if their task allocations are
smaller or equal to x̄, i.e. ℓ ⩽ x̄.

(f) p∗ is strictly increasing.

Proposition 2.1 asserts the existence and uniqueness of equilibrium price p∗ in P ,
which can be computed by iteration with any initial guess from P . Moreover, since c

is strictly increasing, Proposition 2.1 shows that p∗ is strictly increasing.

As indicated by Proposition 2.1, the bounds for P carry substantial economic signif-
icance, capturing all equilibrium prices. The upper bound δc(ℓ) for P suggests that
the equilibrium price is less than or equal to the costs of home production. This
upper limit aligns with the rationale that in a perfect competition market, where
the price equals the total cost, outsourcing becomes economically favorable due to
reduced costs, even after factoring in transaction costs.

As for the lower bound δc′(0)ℓ for P , it represents the costs when the decreasing
return to management is eliminated through outsourcing. Image a scenario where
both transaction costs and assembly costs are absent; under such conditions, firms
would invariably opt for outsourcing. Consequently, this leads to an infinite number of
levels in the production network. The "infinite outsourcing" results in the production
technology approximating a linear function when we view across the entire chain. This
elimination of decreasing return of management translates to a production technology
with a slope of c′(0). Therefore, the lower bound not only leverages the convexity of
the cost function for the proof but also reflects the cost or price when the return to
management is constant.

Proposition 2.1 also shows that the equilibrium price can be determined through a
finite number of iterations, enhancing computational feasibility. Moreover, a firm
invariably becomes a home producer if its task allocation is below the critical value x̄,
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which implies that the length of the production chain is always finite under equilibrium
price. Note that the length of the production chain is also the number of iteration
for computation 1 − ln(x̄− κ), provided in Proposition 2.1. As discussed in Section
2.1, if we ascertain the equilibrium length of the production, we can determine the
task allocations. Therefore, there exists a feasible allocation ℓ∗ such that (p∗, ℓ∗)

constitutes an equilibrium for the production chain, in line with Definition 2.1.

Let p∗ be the fixed point of operator T . Then, p∗ is the solution of the price equation
(1). Let m∗ denote the number of total levels corresponding to p∗. According to
Proposition 2.1, there exists a maximal possible length m̄ ∈ N such that m∗ ⩽ m̄.

Thus, m∗ is finite, and the corresponding allocations ℓ∗ are well defined. The following
proposition shows that the solution (p∗, ℓ∗) constitutes a unique equilibrium.

Proposition 2.2. Suppose that 2.1, 2.2 and 2.3 hold. If p∗ is a fixed point of T , then
there exists a feasible task allocations ℓ∗ such that (p∗, ℓ∗) is a unique equilibrium for
the production chain.

Since the number of suppliers is fixed and then the network structure and firm sizes are
tractable, Proposition 2.2 shows the uniqueness of equilibrium, although we lose some
degree of freedom for network structure. Note that the proof employs the convention
that firms will engage in in-house production when the costs for home production and
subcontracting are equal. Proposition 2.2 also implies that the unique equilibrium of
the production chain can be identified after we compute the equilibrium price from
Proposition 2.1. Consequently, these results show that the upper bound and lower
bound for the pricing function are deemed reasonable.

2.3. Properties of Equilibrium. This section attempts to characterize various
properties of equilibrium (p∗, ℓ∗). It includes comparative statics analysis using nu-
merical methods and examples to reinforce the validity of the model.

2.3.1. Length of Production Chain, Price, and Allocations. In this section, we present
some observations and intuitions about equilibrium. To begin with, we characterize
the maximal attainable length and task allocations within the production chain in
equilibrium. Note that the range of tasks is κ−(m−1) at level m, and the largest
attainable length m̄ is the larges integer satisfying κ−(m−1) ⩽ x̄ by Proposition 2.1.
Then, the equilibrium number of levels m∗ in the production chain is at most m̄ :=
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⌈1− ln(x̄)/ ln(κ)⌉, where ⌈r⌉ denotes the smallest integer greater than r ∈ R. Since
x̄ := sup{x ∈ (0, 1] : c′(x) ⩽ δc′(0)}, it is evident that the transaction costs, the
convexity of cost function and the number of suppliers influence the length of the
chain.

The maximum possible number of levels m̄ decreases with both the number of up-
stream partners κ and transaction costs τ , which results in an increase in x̄.12 This
indicates that transaction costs discourage the subcontract and limit the length of
the chain. Hence, we can characterize some properties of the equilibrium price, by
κ, δ, α(.) and c(.) functions, before computing it explicitly.

Here, we present a method to compute the optimal length without explicitly com-
puting the equilibrium prices. Define the function f(ℓ) := κδc(ℓ/k) + α(ℓ)− c(ℓ) for
ℓ ∈ [0, 1]. This function represents the additional costs of subcontracting compared
to in-house production, assuming that the subcontracting partners are home produc-
ers. Observe that f(0) = 0 by our assumptions, and f(ℓ) < 0 indicates that the
outsourcing costs are less than in-house production costs. Suppose that f has a root
ℓ̂ in (0, 1]. In the appendix, we demonstrate that if f is strictly concave, then a firm
chooses in-house production when ℓ ⩽ ℓ̂, and opts for outsourcing when ℓ > ℓ̂.13 This
also implies that if ℓ̂ < 1, then the equilibrium length exceeds 1.

Regarding the equilibrium prices, we are aware that p∗ is strictly increasing in ℓ, as
shown by Proposition 2.1. In addition, we can gain insight into the price function
by the following iteration. If the total number of levels is m ∈ N, the price of final

12Since − ln x̄ > 0, m̄ is decreasing in κ.
13Since f ′′(ℓ) = δ/κc′′(ℓ/κ) − c′′(ℓ) + α′′(ℓ), we can check that f ′′ < 0 if δ/κ < 1, c′′ > 0 and

α′′ ⩽ 0.
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product p(1,m) follows

p(1,m) = δκp(κ−1) + δb

= δκ
[
δκp(κ−2) + δbκ−q

]
+ δb

= (δκ)2p
(
κ−2

)
+
(
δκ1−q + 1

)
δb

= . . .

= (δκ)m−1p
(
κ1−m

)
+
[
(δκ1−q)m−2 + · · ·+ δκ1−q + 1

]
δb

= (δκ)m−1δc
(
κ1−m

)
+
[(
δκ1−q

)m−2
+ · · ·+ δκ1−q + 1

]
δb

= (δκ)m−1δc
(
κ1−m

)
+

(δκ1−q)
m−1 − 1

δκ1−q − 1
δb.

(4)

In (4), the first term of the right-hand side represents the in-house production costs
with tasks κ1−m. The second term reflects the assembly costs, accounting for trans-
action costs. Clearly, if m is fixed, equation (4) shows that the price of finished
goods increases with transaction costs δ, assembly cost parameter b, and the costs
of in-house production c. However, note that the optimal length of the chain m∗

will change if we alter these parameters. Consequently, the impact of these parame-
ters on the equilibrium price is ambiguous from this perspective, as changes in these
parameters may influence the optimal length of the chain, thus affecting the overall
equilibrium price.

Recall that the firms become home producers if they are at level m̄. To this end, we
can also define the equilibrium price of the final good p∗(1) as

p∗(1) := min
m=1,...,m̄

{
(δκ)m−1δc

(
κ1−m

)
+

(δκ1−q)
m−1 − 1

δκ1−q − 1
δb

}
. (5)

This equation can be interpreted as that the organizer of the supply chain selects an
optimal length, given that the number of suppliers is fixed. However, since the choice
variable m is discrete, it is challenging to characterize m∗ by (5).

2.3.2. Firm Sizes. Define the value-added as c(ℓ) for home producers and as α(ℓ) for
subcontractors. Given that the assembly cost is increasing for tasks, the value added
for each subcontractor increases as it progresses downstream levels. If we consider
firm size as the value-added, the model exhibits the characteristic that downstream
subcontracting firms are larger than upstream subcontracting firms. This result aligns
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with studies such as Kikuchi et al. (2018) and Fally and Hillberry (2018), which
observe a negative correlation between "upstreamness" and the value-added.14

On the other hand, the firm sizes for the most upstream firms or home producers
are indeterminate. Home producers may be smaller than downstream firms since
they receive the least amount of tasks in the production chain. However, they could
also be large under some cost functions and parameters. This feature reflects the
complexity of the real world, where empirical studies show that countries or industries
at the upstream and downstream extremities of the chain often have higher shares
of value-added than those in the middle. The most upstream firms may have higher
value-added such that the curve of value-added along the chain is like a "smile" curve
(Ito and Vézina, 2016, Aggarwal, 2017, Rungi and Del Prete, 2018, Stöllinger, 2019).

2.3.3. Comparative Statics. In a perfect competitive economy, prices reflects total
costs, leading to an intuitive expectation that equilibrium prices would increase with
any costs, including transaction costs, assembly costs, or production costs. The fol-
lowing proposition demonstrates that the shift in equilibrium price is monotonic with
respect to these costs.

Proposition 2.3. Suppose that 2.1, 2.2 and 2.3 hold. The equilibrium price is in-
creasing in transaction cost, assembly cost, and home production cost.

The proof relies on the monotonicity of operator T . It can also be shown that the
price of the final good is strictly increasing in transaction costs, assembly costs, and
home production costs, where the proof leverages the fact that the equilibrium price
can be characterized using the optimal length, as expressed in (4).

Example 2.1. This numerical example employs the function c(ℓ) = A(eθℓ − 1) as
an illustration. The change in price with respect to parameters τ, c(ℓ), κ, α(ℓ) are
depicted in Figure 2. The result align with Proposition 2.3. It also indicates that the
prices are decreasing in the number of suppliers κ. The intuition for decreasing prices
with κ lies in the fact that as κ increases, tasks are split into smaller pieces, reaching
home production criterion ℓ ⩽ x̄ in a shorter length.

14The upstreamness is the relative position in the chain. The firm is in a more upstream position
if the measure of upstreamness is higher. See Antràs et al. (2012), Antràs and Chor (2018) and
Wang et al. (2017).
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Moreover, the length is observed to increase in cost function c(ℓ), and decrease with
transaction costs, the number of suppliers, and assembly costs. In this example, the
total assembly costs decline as the length becomes shorter, but it may not be the case
if q > 1. □

(a)

Model Length
Baseline 5
τ = 0.1 4

c(ℓ) = 1.8(eℓ − 1) 6
c(ℓ) = e1.5ℓ − 1 6

κ = 3 4
α(ℓ) = 0.05ℓ 4

(b)

Figure 2. The baseline model is with τ = 0.01, α(ℓ) = 0.01ℓ, κ =

2, c(ℓ) = eℓ − 1. We first plot the baseline price function and then plot
the case for increasing τ = 0.1, c(ℓ) = 1.8(eℓ−1), c(ℓ) = e1.5ℓ−1, κ = 3,
α(ℓ) = 0.05ℓ, respectively.

2.3.4. An Example of Assembly Cost and Cost Function. This section presents an
example of a closed-form solution for the cost function and assembly cost derived
from the firm’s cost minimization problem. The motivation for this example arises
from the question: Does the share of intermediate inputs affect the shape of the
production chain? Intuitively, if the production process involves a higher utilization
of inputs, the production entity would tend to outsource more tasks, potentially
resulting in a longer chain. This section discusses how the cost share of intermediate
inputs influences the structure of the production network.

Moreover, it is known that the transaction cost can impact the share of the inter-
mediate. For example, Boehm and Oberfield (2020) point out that court congestion
makes contract enforcement slow, leading plants in industries reliant on relationship-
specific inputs and in states with more congested courts d to have lower shares of
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intermediate inputs. Given that the cost of contract enforcement is a component of
transaction costs, we would expect that it influences the structure of a production
network both directly through the effect of transaction costs and indirectly through
the share of intermediate inputs.

Suppose that firms have the Cobb-Douglas production function as

q =

As[(k
an1−a)1−σxσ]θ if subcontract,

Ah(k
an1−a)θ if produce in-house,

(6)

where q denotes output, k denotes capital, n denotes labor, xdenotes intermediate
input, and σ, a and θ are all in (0, 1) representing intermediate share, capital share
and degree of decreasing return, respectively. Given task ℓ, wage rate w and rental
rate r, if firms choose to subcontract, firms using κ pieces of intermediate ℓ/n and
minimize the costs to the output ℓ

min
k,n

rk + wn+ κp(ℓ/κ) s.t. ℓ = As

[
(kan1−a)1−σ

(
κ
ℓ

κ

)σ]θ
.

Let the assembly cost function be the resulting minimum cost function of labor and
capital as

α(ℓ) := min
k,n

{rk + wn} = rk∗ + wn∗ = Caℓ
(1−σθ)/(θ(1−σ)), (7)

for a positive constant Cs.15 Since θ < 1, we have (1− σθ)/(θ(1− σ)) > 1.

On the other side, if the firm is a home producer, assume that the cost is c(ℓ) =

mink,n{rk + wn}+ hℓ, where h is a constant. Given ℓ, a home producer solves

min
k,n

rk + wn+ hℓ s.t. ℓ = Ah(k
an1−a)θ. (8)

Then, the resulting cost is
c(ℓ) = Chℓ

1/θ + fℓ

satisfying c′(0) > 0, where Ch is some constant.16 It is known that the capital share
is around 1/3, and the intermediate share is around 1/2. Suppose that θ = 9/10, for
example, then α(ℓ) = Chℓ

11/9 and c(ℓ) = Chℓ
10/9 + hℓ.

This simple model also sheds light on how production efficiency affects the outsourcing
decision. If assembly is significantly more efficient than home production, i.e., As is

15Cs = (1/As)
1/(1−σ)θ

[
(r/w)

a
((1− a)/a)

a
+ (w/r)

1−a
(a/(1− a))

1−a
]
.

16Ch = (1/Ah)
1/θ

[
(r/w)

a
((1− a)/a)

a
+ (w/r)

1−a
(a/(1− a))

1−a
]
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much higher than Ah, then Cs is much smaller than Ch. Then, outsourcing will occur
if the transaction cost is also small enough.

Observe that the parameter q of assembly costs is (1 − σθ)(θ(1 − σ)), which is in-
creasing in σ. Since ℓ ⩽ 1, the assembly cost α(ℓ) is decreasing in the share of
intermediate σ. Thus, if the share of intermediate is lower, the higher assembly costs
make subcontracting less attractive, yielding a shorter production chain.

According to Boehm and Oberfield (2020), when courts are more congested, transac-
tion cost τ is higher, and the share of intermediate σ is lower. Together with both
changes, the model predicts that the chain is shorter, prices are higher and firms
at the most upstream level will have larger vertical span of production. This aligns
with the findings in Boehm and Oberfield (2020), showing that plants tend to have
large vertical span of production if they are confronting higher-congested courts and
relying on relationship-specific inputs.

3. An Economy of Balanced Production Chains

Guilmi and Fujiwara (2020) and Hiromitsu and Wataru (2020) suggest that a firm’s
position in a production network is related to its size, which causes the departure of
Gibrat’s law for upstream firms. Moreover, Gibrat’s law typically breaks down for
small firms due to their higher growth rates driven by innovation.17 This phenom-
enon is particularly pronounced for small firms situated at the upstream levels of a
production chain, as noted by Hiromitsu and Wataru (2020). Guilmi and Fujiwara
(2020) further show that upstream firms tend to be more volatile than downstream
firms. Hence, Gibrat’s law breaks down for those smaller upstream firms.

This section aims to illustrate this departure within a production network. Specifi-
cally, we construct an economy based on the balanced trees of a production network.
This economy has the features that the firm sizes of assemblers or subcontractors
follow a power-law distribution, and home producers are more fluctuated than sub-
contractors, assuming the assembly technology remains unchanged in the short run.
Consequently, when examining the upstream firms across all balanced chains, the
upstream firms are more volatile.

17e.g. Lotti et al. (2003), Calvo (2006), Daunfeldt and Elert (2013), Tang (2015) and Aydogan
and Donduran (2019))
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3.1. Distribution of Firm Size. We first show that when in a balanced supply
chain, where the number of suppliers is fixed for every subcontractor, the sizes of
firms follow a power-law distribution. This section is motivated by the fact that the
Pareto distribution of firm size holds for mid-stream and downstream firms (Hiromitsu
and Wataru, 2020).

Let m∗ be the optimal length of the chain in equilibrium. Recall the network structure
that there are κm−1 number of firms at level m, and each firm of level m implements
κ1−m of tasks for all m ⩽ m∗.

Define the firm size by the value-added vj for firm j in the chain. If firm j is a home
producer, then its value-added is defined as the cost of in-house production, vj = c(ℓj)

for ℓj ∈ D. On the other hand, if firm j is a subcontractor, then the value-added is
the assembly cost, vj = α(ℓj).18 If the subcontractor j is at level m, its value-added
or firm size is vj = bℓqj = b(κ1−m)q = bκ(1−m)q.

If we also let q = 0 in the assembly cost function, then the distribution of firm size is
flat since the value-added for all subcontractors is a constant α(ℓ) ≡ b. Alternatively,
if q > 0, then the firm sizes, bκ(1−m)q, decline exponentially as we go upstream levels,
while at the same time, the number of firms κ1−m at each level grow exponentially.
Hence, we have the following lemma.

Let s ⩾ 0 be the firm size of the subcontractor, and F (s) be the fraction of firms with
sizes greater than or equal to s.

Proposition 3.1. Suppose that Assumption 2.1 and 2.2 hold, assembly cost is b(ℓ)q

with b, q > 0, and the price function is

p(ℓ) = δmin{kp(ℓ/κ) + bℓq, c(ℓ)} (ℓ ∈ D).

Then, there exist smin>0 and γ > 0 such that F (s) = Cs−γ − D for all s̄ ⩾ y ⩾

smin, where C and D are some positive constants, and s̄ is the size of the largest
subcontractor. In particular, γ = 1/q.

Proof. Let all the stated assumptions hold. Suppose that there are m∗ levels in total
in equilibrium. Since there is no subcontractor if m∗ = 1, assume that m∗ > 1. By
the discussion in section 3.1, there are κi−1 firms at level i and the subcontractors’

18A subcontractor buys intermediate inputs from suppliers and does the assembly work, so its
value-added is the assembly cost.
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sizes are bκ(1−i)q at the level i of chain in equilibrium. Let smin = bκ(2−m∗)q, which is
the sizes of the smallest subcontractors at level m∗−1.19 Let s be the firm size of one
of the subcontractors. Then, there exists m ⩽ m∗ such that s = bκ(1−m)q. Clearly,
b ⩾ s ⩾ smin.

Moreover, there are in total 1 + κ + · · · + κm∗−1 firms in the chain and there are
1 + κ + · · · + κm−1 firms at level 1, . . . ,m.20 In this setting, F (s) is the fraction of
subcontractors at level 1, . . . ,m. Then, by definition of f and changing variables of
s = bκ(1−m)q, we have

F (s) =
1 + κ+ · · ·+ κm−1

1 + κ+ · · ·+ κm∗−1
=

κm − 1

κm∗ − 1
=

κb1/qs−1/q − 1

κm∗ − 1
.

Let γ := 1/q, C := κb1/q/(κm∗ − 1) and D := 1/(κm∗ − 1). Hence, F (s) = Cs−γ −D

for b ⩾ s ⩾ smin. Generally, F (s) ∝ s−γ. □

Proposition 3.1 implies that the firm sizes for subcontractors are Pareto distributed
in equilibrium. In addition, when the in-house producers have the smallest size in
equilibrium, then the upper tail, excluding the smallest firms, is Pareto distributed.
Furthermore, if q = 1, then the above distributions follow a Zipf’s law.21 If the "span
of control" parameter of assembly cost q is less than one, the assembly cost is strictly
concave, and the Pareto exponent 1/q is greater than one by Proposition 3.1.

Example 3.1. This part presents the computation results given the proportional
assembly cost bℓq. With the parameters τ = 0.01, b = 0.001, κ = 2, q = 0.92 and
c(ℓ) = 0.01(e25x − 1), the production network is shown in Figure 3a. There are 8

levels in equilibrium. Next, we plot the log-rank plot of the distribution of firm sizes
for subcontractors in this equilibrium, see Figure 3b. Note that the ranks are the
same if the firms have the same size and there are κm−1 firms at level m = 1, ...,m∗.
Define the rank as κm−1 if the firm is at level m.22 Thus, the ranks for, say, κ = 2

are 1, 2, 2, 4, 4, 4, 4, 8, . . . . There are 8 levels in equilibrium, so there are 7 points in
Figure 3b, where κm−1 points of subcontractors collapse into one point in every level.

19This smin captures the tail of all subcontractors. We can also choose larger sizes of
subcontractors.

20Including the firm of size s itself.
21For example, Axtell (2001) finds that the Pareto exponent is 1.059 , using employees as sizes,

or 0.994, using receipts as sizes, for U.S. firms.
22Under this definition, the slope of the log-rank plot reveals the Pareto exponent for convenience.
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The slope of log-rank plot is −0.92 which is equal to the parameter −q of assembly
function bℓq as predicted by Proposition 3.1.23 In this case, the Pareto exponent is
1/q = 1.087.

In addition, let κ increase from 2 to 5 and fix other parameters. Then, the computa-
tion indicates that the total number of levels of the chain declines to 4 in equilibrium,
see Figure 4. This result is reasonable since the maximal number of levels m̄ is de-
creasing in κ. On the other hand, under these particular specifications, the firms at
the most upstream level have the smallest sizes. As in the previous example, the slope
is −q in Figure 4b, and the Pareto exponent is unchanged. The comparative statics
implies that the Pareto exponent is not affected by the structure of the network if the
curvature of assembly cost is identical. □

3.2. Breakdown of Gibrat’s Law. Given a equilibrium production chain (p∗, ℓ∗),
Proposition 3.1 implies that large firms at the downstream exhibit power-law dis-
tributed sizes. In addition, it indicates that the sizes of firms at the most upstream
do not necessarily follow a power-law distribution. To this end, the sizes of small
firms within the production chain generally deviate from a power law. It suggests
that there exists a departure of Gibrat’s Law; otherwise, the sizes of small firms would
also exhibit a power-law distribution.

We restrict the time frame to the short run since we are interested in short-term
volatility. This assumption is inspired by Tang (2015), who demonstrates that there
is a steady state in the firm’s expansion and that Gibrat’s law breaks down in the
short run but holds in the long run.24

Suppose that firms solve cost minimization problems outlined in Section 2.3.4. Let the
cost function be (8) and assembly cost function be (7). Suppose that the efficiency of
in-house production grows over time in the short run, to the extent that the structure
of the network undergoes minimum change.25 That is, let Ah,t+1 = ζt+1Ah,t with
growth rate ζt > 0 and let the other parameters are fixed, indicating that Ch in (8)

23Pareto law can also be formulated as n = Ax−γ , where n is the number of people having wealth
⩾ x. Thus, we can write x(n) = Cn−1/γ and then log x(n) = logC − (1/γ) log n. The slope of
log-rank is −1/γ, which is −q of Proposition 3.1.

24Tang (2015) studies firm-level data in the Swedish energy market.
25Hiromitsu and Wataru (2020) also shows that the structure of the production network is stable

in the short run.
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(a) Production network.

(b) The log-rank plot for the distribution of firm sizes.

Figure 3. The production chain with τ = 0.01, b = 0.001, κ = 2, q =

0.92 and c(ℓ) = 0.01(e25x − 1).

varies over time. Suppose that the growth ζt+1 is a random process such that the
optimal length of the production chain remains unchanged in the short run. There
is no innovation in assembly technology in the short run. Consequently, the sizes of
home producers change over time, while the sizes of subcontractors are stable over
time. As a result, smaller firms at upstream have higher volatility, while large firms at
downstream maintain more stable sizes. Furthermore, if the assembly efficiency Cs in
(7) or assembly productivity As is volatile in the short run, the most upstream firms
also experience greater fluctuations. This is because firms may alter their outsourcing
decisions or exit the production chain.

We expand the model from a chain to an industry, considering N heterogeneous goods
in an industry. For each good i = 1, · · · , N , there is a production chain dedicated to
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(a) The network of production.

(b) The log-rank plot of the firm-size distribution for
the subcontractors.

Figure 4. Production chain with τ = 0.01, b = 0.001, κ = 5, q = 0.92

and c(ℓ) = 0.01(e25x − 1).

producing good i. The pricing function (1) determines the price for each good based
on a fixed number of suppliers κi so that the chain is balanced.26

Production chain i is characterized by production cost ci, assembly cost αi and trans-
action cost τi. Specifically, we assume that ci(ℓ) = Ch,iℓ

θi +εiℓ, where εi is a constant,
αi(ℓ) = Ca,iℓ

qi and parameter δi = 1/(1 − τi). Here, the parameters Ch,i, εi and Ca,i

are selected such that home-producing firms tend to be smaller in size compared to
most outsourcing firms. Suppose that Assumption 2.1 , 2.2 and 2.3 hold. Then,
Proposition 2.2 confirms the existence of a unique equilibrium for each production

26In Section 4, we can introduce a method to determine κi by the local optimality.
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chain. In the equilibrium, each production line has the optimal length m∗
i and price

p∗i .

Assume that each firm produces all N final goods. Each firm j is randomly at level mj

in all chains and then has a random size Sj. The cost or value added of subcontractor
firm j producing good i is Xi, which follows a power law with parameter γi by
Proposition 3.1. From Gabaix (2009), we know that if Y1 and Y2 are power-law
variables, then Y1 + Y2 is also power-law variable.27 Then, a subcontractor’s size
Sj = X1 + · · ·+XN follows a power law.

Contrary to home producers, the firm sizes of home producers do not necessarily follow
a power law. If further the home production technology Ch,i is more volatile than
assembly technology Ca,i, then the sizes of home producers exhibit higher volatility.
Examining the entire industry, the upstream firms in the economy tend to be more
volatile than downstream firms in the short run. Given that home producers typically
have smaller firm sizes, smaller firms inherently possess higher volatility.

In summary, it appears that the growth rates of firms are contingent on their sizes,
leading to a breakdown of Gibrat’s Law for upstream firms. Simultaneously, down-
stream subcontractors conform to a power-law size distribution across all produc-
tion chains. The model elucidates that small firms and upstream firms deviate from
Gibrat’s law, while large firms and downstream firms adhere to a power-law distribu-
tion of firm sizes.

4. Extension: An Endogenous Number of Suppliers

The assumption that the number of suppliers is fixed may be unrealistic. However, we
can approximate the real world by choosing a reasonable fixed number of suppliers for
our model. This section first shows that the local optimum for the supplier number
can be found by numerical computation.

Moreover, we establish an alternative model relaxing the assumption of the fixed num-
ber of suppliers, so that subcontractors can choose an arbitrary number of suppliers.
We show the existence and uniqueness of equilibrium for the extended models.

27If X and Y are power-law variables with exponent ζx and ζy satisfying ζy ⩾ ζx, then X + Y is
a power-law variable with exponent ζx.
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4.1. Local Optimality for Number of Suppliers. Throughout this section, we
denote the number of suppliers as n ∈ N \ {1}. To simplify the problem, suppose
that the assembly cost is fixed at a constant α. As indicated by m̄ = ⌈1− ln x̄/ lnn⌉
from Section 2, we express the maximal possible number of levels as a function of n,
denoted as m̄(n). Then, (5) implies that the price of the final good is a function of n,

p∗(1, n) := min
m=1,...,m̄(n)

{
(δn)m−1δc

(
n1−m

)
+

(δn)m−1 − 1

δn− 1
δα

}
= min

m=1,...,m̄(n)
{p(1, n,m)}.

(9)

In other words, the planner of the production chain strategically determines the opti-
mal number of levels m, given the number of suppliers n in each level. This decision-
making process is illustrated in Figure 5b, where the grey line represents the minimum
cost, i.e. the prices of final good p∗(1, n), among all possible m. Notably, for each
m = 2, . . . , 6, the pricing functions for the final good exhibit convexity, featuring
local minimum prices. Therefore, if there are frictions to increase supplier numbers,
such as contract costs and the expenses associated with searching for new suppliers,
a firm may opt to remain at these locally minimized points to minimize the total cost
effectively.

Moreover, Figure 5a reveals that the number of optimal levels m∗ is less than m̄ and
converges to 2, and the final price generally decreases in n. This suggests that, in
the absence of costs related to expanding suppliers, the most downstream firm can
achieve cost reduction by increasing suppliers to an arbitrary number.

In general, the planner overseeing the chain has an incentive to increase the number
of suppliers when there is no friction affecting the search of supplier. Since m̄ =

⌈1− ln x̄/ lnn⌉, we have m̄ → 2 as n → ∞.28 Moreover, given m∗ ⩽ m̄, we know that
the optimal number of levels is m∗ ⩽ 2 if the number of suppliers n is sufficiently
large.

If the firm at the most downstream level has the incentive to subcontract and then
there are exactly two levels in the chain m∗ = 2, the pricing function implies np(1/n)+
α = nδc(1/n) + α < c(1). Since the cost function c is convex, strictly increasing, and
c(0) = 0, the function nc(1/n) is strictly decreasing in n and bounded below by zero.
Hence, nc(1/n) converges to some t ⩾ 0 as n → ∞ by the monotone convergence

28− ln x̄ > 0.
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(a) Prices of final good and the corresponding number of levels

(b) Prices of final good, fixing number of levels m.

Figure 5. Prices of final good, given that τ = 0.001, α(ℓ) = 0.001, n =

2, c(ℓ) = e1.5ℓ − 1.

theorem of sequence. Thus, if 2δc(1/2) + α < c(1), there will be two levels for all
n ⩾ 2, and the firm at the most downstream level will subcontract, regardless of the
number of suppliers.
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Note that the condition δ2c(1/2) + α < c(1) is necessary for having at least one
subcontractor in equilibrium. In this case, the firm can minimize the outsourcing
costs by subcontracting the tasks to as many suppliers as possible, given that the
cost δnc(1/n) + α ↓ δt + α. Therefore, if there is at least one subcontractor and
no cost for expanding upstream partners, the planner has the incentive to raise the
number of suppliers unlimitedly, resulting in only two levels in the chain.

4.2. Global Optimality of Suppliers. To curb the endogenously unbounded num-
ber of suppliers, we consider assembly costs that are intuitively proportional to the
number of suppliers. The underlying rationale stems from that as subcontractors
further divide tasks into smaller components, the process of assembling inputs neces-
sitates additional effort. Precisely, let the assembly cost function be α(n) where n is
the number of upstream suppliers and α(n) is strictly increasing in n.

Assumption 4.1. The assembly cost α : N \ {1} → R is strictly increasing and
α(2) > 0.

Then, the profits for firms in the chain are

(1− τ)p(ℓ)−min{np(ℓ/n) + α(n), c(ℓ)} (10)

The corresponding Bellman equation of the pricing function is

p(ℓ) = δmin{np(ℓ/n) + α(n), c(ℓ)} (11)

Following the proofs in section 2.2, we can also show the existence and uniqueness
of equilibrium price and allocation under the profits (10). Similar to Proposition 2.1
and 2.2, the unique equilibrium can be computed by iteration, i.e. p∗ = T kp for any
p ∈ P and large enough k.

Lemma 4.1. If Assumption 2.1, 2.2 and 4.1 hold, then

(a) the solution to the Bellman equation (11) is an equilibrium of the production
chain given the profits (10),

(b) the equilibrium price p∗ and allocations ℓ∗ are unique, and

(c) p∗ = T kp for any p ∈ P and sufficiently large k.

Since α(n) is strictly increasing by Assumption 4.1, there exists n̄ such that there
is only one firm or level in the chain when n ⩾ n̄. For n ⩾ n̄, the firm at the
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most downstream level does not have any incentive to subcontract, so n̄ can be
characterized by δnc(1/n) + dα(n) ⩾ c(1). The interpretation is that, if there are
many pieces of modules to assemble, the sum of assembly costs and the transaction
costs may be greater than the costs of production at home so that the firm does not
subcontract at all.

Moreover, the global minimum exists given that α(n) is increasing. The intuition is
that if the assembly cost α(n) is increasing fast enough in the number of suppliers n

but still possible to subcontract, then the global minimum could be at n = 2. These
properties are illustrated in the examples presented in Figure 6, which also depicts
the upper bound for the price of final goods.29

(a) (b)

Figure 6. Examples of global minimum of prices. (a) Prices of final
good are plotted given that τ = 0.01, α(n) = 0.01(n+n1.1), c(ℓ) = ℓ+ℓ2.
The global minimal price is at n = 7. (b) Prices of final good are plotted
given that τ = 0.01, α(n) = 0.1(e0.1n − 1), c(ℓ) = e2ℓ − 1. The global
minimal price is at n = 10.

4.3. Choice over Number of Suppliers. This section extends the assumption that
the number of suppliers is fixed along the production chain. Firms have the flexibility
to select the number of suppliers when opting to subcontract their tasks. In particular,
we introduce the pricing function

p(ℓ) = δmin

{
min

n=2,3,4,...
{np(ℓ/n) + α(ℓ, n)}, c(ℓ)

}
. (12)

29Since the assembly is too high for large n, firms all choose to home production and the bound
is δc(1).
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To provide a more comprehensive framework, suppose that the assembly cost depends
on both tasks and the number of upstream partners. To prevent an unbounded
partner number n∗, we have the below assumption for assembly cost.

Assumption 4.2. Assume that α : [0, 1]× {2, 3, . . . } → (0,∞) is strictly increasing
in both ℓ and n.

Assumption 4.2 makes the optimal number of suppliers n finite if there is outsourcing.
Analogous to Section 2.2, let the set of tasks be D := {k−i : k ∈ N\{1}, i ∈ N∪{0}},
and P := {p : D → R : δc′(0)ℓ ⩽ p(ℓ) ⩽ δc(ℓ)}.30

Under this pricing function, we say that ℓ = {ℓi} is a feasible allocation of tasks
if there are m ∈ N and a finite sequence {nt}mt=1 with n1 = 1 and nt ⩾ 2 for all
t = 2, . . . ,m such that i = 1, 2, . . . , n1n2 · · ·nm and ℓi = (n1n2 · · ·nt)

−1 for n1 +

n1n2 + · · · + n1n2 · · ·nt−1 < i ⩽ n1 + n1n2 + · · · + n1n2 · · ·nt. In words, the length
of the chain, m, is finite and there are n1n2 . . . nt number of firms with allocation
(n1n2 . . . nt)

−1 at level t. Each firm at level t−1 has nt number of subcontractors if it
chooses home production. At the most upstream level m, there are n1 · · ·nm number
of firms with (n1 · · ·nm)

−1 measure of allocated tasks.

Moreover, the profit of firm i is

πi = (1− τ)p(ℓi)−min

{
min

n=2,3,...
{np(ℓi/n) + α(ℓi, n)}, c(ℓi)

}
(13)

We can define the equilibrium under the price (12) as definition 2.1 using the above
feasibility definition and profit (13).

Definition 4.1. Given a price function p, a feasible allocation ℓ = {ℓi} and the
corresponding profit defined by (13), (p, ℓ) is an equilibrium if

(1) p(0) = 0,

(2) for all ℓ ∈ D,

(1− τ)p(ℓ)−min

{
min

n=2,3,...
{np(ℓ/n) + α(ℓ, n)}, c(ℓ)

}
⩽ 0,

(3) πi = 0 for all i.

30It can also be defined as D = [0, 1] and the results hold.
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Then, we can prove the existence of equilibrium. For the following proposition, define
the operator T as

Tp(ℓ) := δmin

{
min

n=2,3,4,...
{np(ℓ/n) + α(ℓ, n)}, c(ℓ)

}
.

Suppose that firms choose the minimum number of suppliers when there are mul-
tiple number of suppliers that minimize the cost. That is, suppose firms choose
min{argminn⩾2{np(ℓ/n)+α(ℓ, n)}} as their number of suppliers if np(ℓ/n)+α(ℓ, n) <

c(ℓ). The proof of unique equilibrium uses this assumption to pin down the feasible
task allocation.

Proposition 4.1. If 2.2, 2.1 and 4.2 hold, and the price is defined by (12), the
following statements are true.

(a) The operator T is a self-map on P and has a unique fixed point p∗ in P
(b) The fixed point can be computed by T kp = p∗ for all k ⩾ 1− ln x̄/ ln 2 and all

p ∈ P.

(c) The production chain has a unique equilibrium (p∗, ℓ∗), where p∗ is the fixed
point of T , and ℓ∗ is the corresponding task allocation under p∗.

Hence, we can compute the unique equilibrium in a manner consistent with the basic
model. The comparative statics also yield similar results as previously observed.

Proposition 4.2. If 2.2, 2.1 and 4.2 hold, and the price is defined by (12), then the
equilibrium price is increasing in transaction cost, assembly cost and home production
cost.

As in Section 2.3, we can gain insights into the equilibrium price by the properties
of the cost function before computing it. The following two lemmas illustrate the
equilibrium price’s characteristics, demonstrating that, under certain conditions, the
equilibrium price is strictly convex almost everywhere.

Suppose that the assembly function α(n) only depends on the number of suppliers
and Assumption 2.3 holds. Moreover, assume that c, α ∈ C2 are twice differentiable.
Define t(n, ℓ) := δnc(ℓ/n)−c(ℓ). Then, the second derivative t22(n, ℓ) = (δ/n)c′′(ℓ/n)−
c′′(ℓ) implies that t(n, .) is strictly concave when 0 < τ < 0.5 and c is strictly convex,
with n ⩾ 2. In addition, define f(ℓ) := minn=2,3,...{t(n, ℓ) + α(n)}. The next lemma
helps us to determine the boundary of subcontracting and length of the chain.



33

Lemma 4.2. Suppose that t(n, .) is strictly concave. Then, f(ℓ) has a root ℓ̂ in (0, 1]

if and only if p(ℓ) = δc(ℓ) for all 1 ⩽ ℓ ⩽ ℓ̂ and p(ℓ) < δc(ℓ) for all ℓ̂ < ℓ ⩽ 1.31

This lemma shows that when the transaction cost is not excessively large (τ < 0.5)
and the cost is strictly convex, the boundary allocation for subcontracting can be char-
acterized by computing the root of f(ℓ), which is determined by the home-producing
cost and assembly cost. This allows us to calculate the boundary task of subcontract-
ing (the root ℓ̂) before knowing the equilibrium price.

Lemma 4.2 also shows that if the root of f(ℓ) is less than 1, then the length of the
chain is greater than or equal to 2. Consequently, there must exist subcontractors in
the chain, as the firms with ℓ ∈ (ℓ̂, 1] always choose to outsource. Furthermore, if the
assembly is relatively economical, meaning that firms can choose numerous partners
and divide the tasks in numerous modules with little cost, then there would be only
two levels of length, as 1/n < ℓ̂ for large n.

Lemma 4.3. Let p be the equilibrium price of (12). Suppose that the assumptions
in Lemma 4.2 hold and further assume that c is strictly convex and α(n) is convex.
Then p is twice differentiable with p′ > 0 and p′′ > 0 almost everywhere.

Figure 7 gives an example of a production network under pricing function (12), with
assembly cost α(n) depending only on n. The scale of the pricing function is in the
log. This example also demonstrates a fat-tailed distribution of the number of buyer-
seller links.32 Moreover, numerical simulations indicate that the number of suppliers
may decrease as the firm goes to upstream levels, when the assembly cost is only
contingent on the supplier count.

5. Conclusion

This paper demonstrates the influence of a hierarchical production chain. The pro-
duction network with hub-like firms can generate a power-law distribution in firm
size without any ex-ante heterogeneity or adhering to Gibrat’s law. The production
network coordinates the positions and task allocations for ex-ante identical firms in

31This lemma also holds if the assembly cost is α(ℓ, n) and α(., n) is concave.
32See Bernard et al. (2019) for an empirical example.
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(a) The log-price function. (b) The network.

(c) The distribution of the number of seller-buyer links.

Figure 7. An example of production chain under (12) with τ =

0.1, α(n) = 0.01n1.8, c(ℓ) = e8ℓ − 1. This chain has length 3 and
(n1, n2, n3) = (1, 7, 4). Also, ℓ̂ = 0.0711.

a way that a large firm tends to be a hub and be at a downstream level. The frame-
work in this paper endeavors to capture this phenomenon through the minimization
of costs. Our model provides insights into why firms following a power law often
occupy downstream positions. Moreover, it explains the departure of Gibrat’s law
for upstream firms, which are more volatile than the downstream counterparts. The
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model underscores the significance of a spider network, akin to the concept introduced
by Baldwin and Venables (2013).

Appendix A. Appendix

Proofs in Section 2.2. Throughout this section, we assume that Assumption 2.1,
2.2 and 2.3 hold.

Lemma A.1. The operator T defined by (3) is a self-map on P and has a fixed point
in P. Moreover, Tp1 ⩽ Tp2 if p1 ⩽ p2 for p1, p2 ∈ P.

Proof. The proof is similar to Kikuchi et al. (2021). Let T be the operator of (3).
We want to show that T : P → P , and T preserves orders so that we can apply
Knaster-Tarski fixed point theorem, with the fact that P is a complete lattice.33

Fix p ∈ P . Clearly, the definition of T implies Tp(ℓ) ⩽ δc(ℓ) for all ℓ. Next, we check
that δc′(0)ℓ ⩽ Tp(ℓ) for all ℓ. Fix ℓ ∈ D. Since p ∈ P , bℓq ⩾ 0 and c is convex, we
have

Tp(ℓ) = δmin {κp(ℓ/κ) + bℓq, c(ℓ)}

⩾ δmin {κδc′(0)ℓ/κ+ bℓq, c(ℓ)}

⩾ δmin {c′(0)ℓ, c(ℓ)}

= δc′(0)ℓ.

Then, Tp ∈ P . In addition, suppose that p1, p2 ∈ P with p1(ℓ) ⩽ p2(ℓ) for all ℓ ∈ D.
Thus, we have

min {κp1(ℓ/κ) + α(ℓ), c(ℓ)} ⩽ min {κp2(ℓ/κ) + α(ℓ), c(ℓ)},

for all ℓ. Hence, we have Tp1 ⩽ Tp2 and T preserves orders. By Knaster-Tarski fixed
point, the set of fixed points of T in P is also a complete lattice. Since a complete
lattice is nonempty, the fixed points exist. □

Next, we characterize the price function in equilibrium and show its uniqueness.
The subsequent lemma suggests that there exists a maximum number of levels. In
other words, the firms will choose to home production when their task allocations are
sufficiently small. Recall that x̄ := sup{x ∈ (0, 1] : c′(x) ⩽ δc′(0)}.

33A partially ordered set is a complete lattice if every subset has both an infimum and a supremum.
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Lemma A.2. Suppose that p ∈ P is a solution to price function (1). Then, given
ℓ ∈ D, if ℓ ⩽ x̄, then p(ℓ) = δc(ℓ). That is, firms choose to home production if ℓ ⩽ x̄.

Proof. Suppose that p ∈ P is a solution to price function (1). Since δ = 1/(1− τ) > 1

with τ ∈ (0, 1) and Assumption 2.2 holds, there is x > 0 such that c′(x) < δc′(0).
Thus, x̄ is well-defined. Toward contradiction, suppose that there is ℓ ∈ D with ℓ ⩽ x̄

such that κp(ℓ/κ) + α(ℓ) < c(ℓ). Since p ∈ P , we have

c(ℓ) > κp(ℓ/κ) + α(ℓ) ⩾ κδc′(0)
ℓ

κ
+ α(ℓ) = δc′(0)ℓ+ α(ℓ) ⩾ δc′(0)ℓ.

Hence, we have c(ℓ)/ℓ > δc′(0). Since c is convex and ℓ ⩽ x̄, this contradicts the
fact that c(ℓ)/ℓ ⩽ c′(ℓ) ⩽ δc′(0). Thus, it must be κp(ℓ/κ) + α(ℓ) ⩾ c(ℓ) and then
p(ℓ) = δc(ℓ), where we follow the convention that min{κp(ℓ/κ) + α(ℓ), c(ℓ)} = c(ℓ) if
equality holds.34 □

Lemma A.3. If p ∈ P, then Tp(ℓ) = δc(ℓ) for all ℓ ⩽ x̄.

Proof. The statement follows from Lemma A.2. □

Lemma A.4. If p, q ∈ P, then T np = T nq for n ⩾ 1− ln(x̄− κ).

Proof. Let p, q ∈ P . The proof is by induction. From the proof of Lemma A.2, we can
show that Tp and Tq are agree on [0, x̄], where x̄ := sup{x ∈ (0, 1] : c′(x) ⩽ δc′(0)}.
Next, we prove that T np = T nq on [0, κn−1x̄] for all n ∈ N . Suppose that the claim
is true for some k ∈ N. Fix ℓ ∈ [0, κkx̄]. Then, since ℓ/κ ∈ [0, κk−1x̄], we have

T k+1p(ℓ) = T (T kp)(ℓ)

= δmin

{
κT kp

(
ℓ

κ

)
+ α(ℓ), c(ℓ)

}
= δmin

{
κT kq

(
ℓ

κ

)
+ α(ℓ), c(ℓ)

}
= T k+1q(ℓ)

Therefore, T np = T nq on [0, κn−1x̄] is true for all n ∈ N. Since κn−1x̄ ⩾ 1 for
n ⩾ 1− (ln x̄)/(lnκ), we have T np = T nq on [0, 1] for n ⩾ 1− (ln x̄)/(lnκ). □

34That is, firms choose to produce in-house if the costs for home production and subcontracting
are identical.
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Lemma A.5. T has a unique fixed point in P and thus the solution to the pricing
function (1) is also unique.

Proof. Let p, q be the fixed points of T . By Lemma A.4, p = T np = T nq = q for large
enough n. Moreover, by the definition of T , p∗ is the fixed point of T if and only if it
is the solution to pricing equation (1). Thus, the solution exists and is unique. □

Lemma A.6. If p ∈ P is (resp. strictly) increasing, then Tp is also (resp. strictly)
increasing. Moreover, if p∗ is the fixed point of T , then p∗ is strictly increasing.

Proof. Since c is strictly increasing in ℓ ∈ [0.1], Tp is (strictly) increasing if p is
(strictly) increasing. It follows from Lemma A.4 that p∗ = T nc for large enough n,
which implies that p∗ is strictly increasing. □

Lemma A.7. If p∗ is a solution to the price equation (1), then there is a feasible ℓ∗

such that (p∗, ℓ∗) is an equilibrium for the production chain.

Proof. Let p∗ be a solution to the price equation (1). By Lemma A.2, there exists m
such that p(ℓ) = δc(ℓ) with ℓ = κ1−m ⩽ x̄, where x̄ = sup{x ∈ (0, 1] : c′(x) ⩽ δc′(0)}.
Let m̄ := ⌈1 − ln x̄/ lnκ⌉, which is the smallest integer satisfying κ1−m̄ ⩽ x̄ and the
largest possible length of chain. Therefore, the corresponding maximal level m∗ ∈ N
for price p∗ satisfies m∗ ⩽ m̄. The corresponding allocations are ℓ∗ = {ℓ∗i } are
ℓ∗i = κ1−n for i = 1, . . . , (κm−1)/(κ−1) and (κn−1−1)/(κ−1) < i ⩽ (κn−1)/(κ−1)

for some 1 ⩽ n ⩽ m∗. Therefore, ℓ∗ is feasible.

Since p∗ ∈ P , we have δc′(0)ℓ ⩽ p∗(ℓ) ⩽ c(ℓ) for all ℓ in D. It implies p∗(0) = 0.
Moreover, since the definition of price equation implies that for all ℓ ∈ D we have

p∗(ℓ)− δmin{κp∗(ℓ/κ) + α(ℓ), c(ℓ)} = 0,

condition (2) and (3) of Definition 2.1 are clearly satisfied. Therefore, (p∗, ℓ∗) is an
equilibrium. □

In Lemma A.7, we construct an equilibrium (p∗, ℓ∗) if p∗ is a unique solution to price
function. We next show that (p∗, ℓ∗) is the unique equilibrium. The proof in the
following lemma uses the convention that the firms choose to produce in-house when
the costs for home production and subcontract are indifferent.

Lemma A.8. If the equilibrium prices and allocations exist, then they are unique.
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Proof. Suppose that there are two arbitrary equilibria (p1, ℓ
1) and (p2, ℓ

2) following
Definition 2.1. Since (p1, ℓ

1) and (p2, ℓ
2) are feasible, there exist m1,m2 > 0 such

that the allocations ℓ1 and ℓ2 have m1 and m2 length of chain or maximal levels,
respectively. Clearly, ℓ1 ̸= ℓ2 if and only if m1 ̸= m2, by the definition of feasibility.
Without loss of generality, assume that m1 ⩾ m2. We first show that p1(ℓ) = p2(ℓ)

for all ℓ = 1, κ−1, κ−2, . . . , κ1−m2 and then extend to ℓ = 1, κ−1, . . . , κ1−m2 , . . . , κ1−m1 .

We claim that, for ℓ = κ−1, κ−2, . . . , κ1−m2 , p1(ℓ) = p2(ℓ) implies p1(κℓ) = p2(κℓ). Let
p1(ℓ) = p2(ℓ) for all ℓ = κ−1, κ−2, . . . , κ1−m2 . Since the firms are subcontractors at
level 1, . . . ,m2 − 1 for both equilibrium, condition (3) of Definition 2.1 implies that

(1− τ)p1(κℓ) = κp1(ℓ) + α(κℓ) = κp2(ℓ) + α(κℓ) = (1− τ)p2(κℓ).

Therefore, we have p1(κℓ) = p2(κℓ). In words, if the prices are equal at level i for
i = 2, . . . ,m2, then the prices are equaled at its downstream level i−1. To this end, if
we can show that p1(κ1−m2) = p2(κ

1−m2) at level m2, then it implies that p1(ℓ) = p2(ℓ)

for all ℓ = 1, κ−1, . . . , κ1−m2 .

If m1 = m2, then firms are home producers at level m1 in both equilibrium so that
p1(κ

1−m1) = δc(κ1−m1) = p2(κ
1−m1). Then, p1(ℓ) = p2(ℓ) for all ℓ = 1, κ−1, . . . κ1−m1

and two equilibrium prices are the same.

Suppose that m1 > m2. Let δ = 1/(1 − τ) and t = κ1−m2 to simplify notations.
Then, p1(t) ̸= p2(t). At level m2, the firms in equilibrium (p1, ℓ1) are subcontractors,
while the firms in equilibrium (p2, ℓ2) are in-house producers. Hence, condition (3) of
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Definition 2.1 implies p2(t) = δc(t) and the following iteration

p1(t) = δκp1(t/κ) + δα(t)

= δκ[δκp1(t/κ
2) + δα(t/κ)] + δα(t)

= (δκ)2p1(t/κ
2) + δ2κb(t/κ)q + δb(t)q

= (δκ)2p1(t/κ
2) + δbtq[δκ1−q + 1]

= (δκ)2[δκp1(t/κ
3) + δα(t/κ2)] + δbtq[δκ1−q + 1]

= (δκ)3p1(t/κ
3) + δbtq[(δκ1−q)2 + δκ1−q + 1]

= . . .

= (δκ)m1−m2p1(t/κ
m1−m2)

+ δbtq[(δκ1−q)m1−m2−1 + · · ·+ δκ1−q + 1]

= (δκ)m1−m2δc(κ1−m1) + δbtq
(δκ1−q)m1−m2 − 1

δκ1−q − 1

(14)

Similarly, condition (2) of equilibrium implies p1(t) ⩽ δc(t) and the iteration

p2(t) ⩽ δκp2(t/κ) + δα(t)

= (δκ)2p2(t/κ
2) + δbtq[(δκ1−q) + 1]

⩽ (δκ)2[δκp2(t/κ
3) + δα(t/κ2)] + δbtq[δκ1−q + 1]

= (δκ)3p2(t/κ
3) + δbtq[(δκ1−q)2 + δκ1−q + 1]

⩽ . . .

⩽ (δκ)m1−m2p2(t/κ
m1−m2) + δbtq[(δκ1−q)m1−m2−1 + · · ·+ 1]

⩽ (δκ)m1−m2δc(κ1−m1) + δbtq
(δκ1−q)m1−m2 − 1

δκ1−q − 1

= p1(t)

(15)

where the last inequality follows from p2 ∈ P . Therefore, δc(t) = p2(t) ⩽ p1(t) ⩽

δc(t). We have p1(t) = p2(t) and then p1(ℓ) = p2(ℓ) for all ℓ = 1, κ−1, . . . , κ1−m2 at
lower levels by the previous claim. It implies that firms at level m2 in equilibrium
(p1, ℓ1) have the same costs as the home production.

Since firms choose to produce in-house when the home production costs and subcon-
tracting costs are the same, the firms at level m2 under equilibrium p1 will choose to
home production since p1(κ

1−m2) = δc(κ1−m2) = δκp1(κ
−m2) + δα(κ1−m2). That is,

the firms have no incentive to subcontract and make longer length than m2. Then, it
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must be m1 = m2. This implies that ℓ1 = ℓ2 since the tasks in each level are identical
for their feasibility. □

Proof of Proposition 2.1. The statements follow from Part (a) follows from Lemma
A.1, Part (b) and (c) follow from Lemma A.5, Part (d) follows from Lemma A.4, Part
(e) follows from A.2, and Part (f) follows from Lemma A.6. □

Proof of Proposition 2.2. The statements follow from Lemma A.7 and Lemma A.8.
□

Proofs in Section 2.3. Suppose that 2.1, 2.2 and 2.3 hold through out this section.
Let f(ℓ) := δκc(ℓ/k) + α(ℓ)− c(ℓ) for all ℓ ∈ [0, 1].

Lemma A.9. Suppose that p is the equilibrium price and f is strictly concave. Then,
ℓ̂ ∈ (0, 1] is a root of f if and only if ℓ̂ satisfies p(ℓ) = δc(ℓ) for all 0 ⩽ ℓ ⩽ ℓ̂ and
p(ℓ) < δc(ℓ) for all ℓ̂ < ℓ ⩽ 1.

Proof of Lemma A.9. Let the stated assumptions hold. Let P = {p : [0, 1] → R :

δc′(0)ℓ ⩽ p(ℓ) ⩽ δc(ℓ),∀ℓ ∈ [0, 1]}. The same arguments in Lemma A.1, Lemma A.2
and A.4 show that T : P → P has a unique fixed point in P . Let p be the fixed point
of P , which is also a equilibrium price.

Since f(0) = 0 by assumption 2.1, 2.2 and 2.3, and f is strictly concave, the root of f
on [0, 1] is unique. Suppose that ℓ̂ ∈ (0, 1] satisfies f(ℓ̂) = 0. Fix ℓ ∈ [0, ℓ̂ ]. We have
f(ℓ) ⩾ 0 and δκc(ℓ/κ) + α(ℓ) ⩾ c(ℓ), so

Tδc(ℓ) = δmin{κδc(ℓ/κ) + α(ℓ), c(ℓ)} = δc(ℓ).

Then, δc(ℓ) is a fixed point of T if ℓ is restricted in [0, ℓ̂]. Since T only has one fixed
point, we have p(ℓ) = δc(ℓ).

Next, let ℓ ∈ (ℓ̂, κℓ̂ ]. since ℓ/κ ⩽ ℓ̂ and f(ℓ) < 0, we have

p(ℓ) = δmin{κp(ℓ/κ) + α(ℓ), c(ℓ)}

= δmin{κδc(ℓ/κ) + α(ℓ), c(ℓ)}

= δ2κc(ℓ/κ) + δα(ℓ) < δc(ℓ),
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where the last inequality follows from f(ℓ) < 0. Hence, firms subcontract when
ℓ ∈ (ℓ̂, κℓ̂ ]. Similarly, fixing ℓ ∈ (κℓ̂, κ2ℓ̂ ], we have p(ℓ/κ) < δc(ℓ/κ) and then

p(ℓ) = δmin{κp(ℓ/κ) + α(ℓ), c(ℓ)}

⩽ δmin{κδc(ℓ/κ) + α(ℓ), c(ℓ)}

= δ2κc(ℓ/κ) + δα(ℓ) < δc(ℓ),

where the last inequality follows from f(ℓ) < 0. Iteration implies p(ℓ) < δc(ℓ) for
ℓ ∈ (ℓ̂, κnℓ̂ ] for n ⩾ 2. Therefore, we have p(ℓ) < δc(ℓ) for ℓ > ℓ̂. For the sufficiency,
suppose that ℓ̂ satisfies p(ℓ) = δc(ℓ) for ℓ ⩽ ℓ̂ and p(ℓ) < δc(ℓ) for ℓ > ℓ̂. Then, by the
definition of equilibrium price p, we have f(ℓ) ⩾ 0 for ℓ ⩽ ℓ̂ and f(ℓ) < 0 for ℓ > ℓ̂.
Since the root of f is unique in (0, 1], f(ℓ̂) = 0. □

Lemma A.10. Following Lemma A.9, if 0 < ℓ̂ < 1, then the equilibrium length has
at least two levels.

Lemma A.11. Suppose that Assumptions 2.2 and 2.3 hold, and c is twice differen-
tiable. If f(ℓ) is strictly concave and has a unique root in (0, 1], then the equilibrium
price p is twice differentiable except for a finite number of points with p′(ℓ) > 0. If
further α′′ ⩾ 0, then p′′(ℓ) ⩾ 0.

Proof of Lemma A.11. Let all the stated assumptions hold. By Lemma A.9, there is
ℓ̂ such that p(ℓ) = δc(ℓ) for ℓ ∈ [0, ℓ̂ ]. Fixing ℓ ∈ (ℓ̂, κℓ̂), Lemma A.9 implies that
p(ℓ) = δ[κδc(ℓ/κ) +α(ℓ)] = δ2κc(ℓ/κ) + δα(ℓ). Since c and α are twice differentiable,
p′(ℓ) = δ2c′(ℓ/κ)+ δα′(ℓ) and p′′(ℓ) = δ2/κc′′(ℓ/κ)+ δα′′(ℓ). Since c and α are strictly
increasing, p′(ℓ) > 0. If a is convex, then p′′(ℓ) ⩾ 0.

Fix ℓ ∈ (κℓ̂, κ2ℓ̂). We have

p(ℓ) = δ[κp(ℓ/κ) + α(ℓ)]

= δ[κ[δ2κc(ℓ/κ2) + δα(ℓ/κ)] + α(ℓ)]

= δ3κ2c(ℓ/κ2) + δ2κα(ℓ/κ) + δα(ℓ)

Then, we can compute p′(ℓ) = δ3c′(ℓ/κ2)+δ2α′(ℓ/κ)+δα′(ℓ) and p′′(ℓ) = δ3/κ2c′′(ℓ/κ2)+

δ2/κα′′(ℓ/κ) + δα′′(ℓ) and confirm the statement for ℓ in (κℓ̂, κ2ℓ̂).

By iteration, we conclude that p is differentiable, p′(ℓ) ⩾ 0 and p′′(ℓ) ⩾ 0 in [0, 1]

except for the points {ℓ̂, κℓ̂, . . . , κnℓ̂}, where n is the greatest integer such that κnℓ̂ ⩽

1. □
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Lemma A.12. If δ1 ⩽ δ2 and p∗δ1 , p
∗
δ2

are the corresponding equilibrium prices, then
p∗δ1 ⩽ p∗δ2.

Proof of Lemma A.12. Suppose that δ1 ⩽ δ2. Let T1 and T2 be the corresponding
operator with respect to δ1 and δ2, respectively. Let p ∈ P . Clearly, T1p ⩽ T2p. Since
operator T is order preserving, we have

T1(T1p) ⩽ T1(T2p) ⩽ T2(T2p).

By iteration, p∗δ1 = T n
1 p ⩽ T n

2 p = p∗δ2 for n ⩾ 1− ln x̄
lnκ

□

Proof of Proposition 2.3. Let all the stated assumptions hold. For the transaction
cost, Lemma A.12 and δ = 1/(1− τ) shows that the equilibrium price is increasing in
τ . For home production costs, suppose that c1, c2 : D → R+ satisfying c1(ℓ) ⩽ c2(ℓ)

for all ℓ ∈ D. Let T1 and T2 be the corresponding operator, respectively. Clearly,
T1p ⩽ T2p for all p ∈ P , since we have

min{κp(ℓ/κ) + α(ℓ), c1(ℓ)} ⩽ min{κp(ℓ/κ) + α(ℓ), c2(ℓ)}.

Thus, p∗1 ⩽ p∗2 by the iteration as Lemma A.12, where p∗i is the equilibrium price
with respect to ci, i = 1, 2. Similarly, it can be shown that the price is increasing in
assembly cost.

Next, we show that the price of final good is strictly increasing in transaction cost,
assembly cost and home production cost. Let the price of final good p(α, c,m, δ, κ)

be defined as equation (4). In particular,

p(α, c,m, δ, κ) := (δκ)m−1δc(κ1−m)

+ δα(1) + δ2κα(κ−1) + ·+ δm−1κm−2α(κ2−m)
(16)

Suppose that α1(ℓ) < α2(ℓ) for all ℓ and let p∗1 and p∗2 be the corresponding equi-
librium price. Also let m∗

1 and m∗
2 be the corresponding optimal length in equilib-

rium, m∗
1 ⩾ m∗

2. Then, by the optimality of p∗, we have p∗1(1) = p(α1,m
∗
1; δ, κ, c) ⩽

p(α1,m
∗
2; δ, κ, c) < p(α2,m

∗
2; δ, κ, c) = p∗2(1). For the other task allocation t = 1, κ−1, · · · , κ1−m∗

2 ,

we can also characterize the price p∗(t) as equation (14) and show that p∗1(t) < p∗2(t).

For the production cost, suppose that c1(ℓ) < c2(ℓ) for all ℓ and let p∗1 and p∗2 be
the corresponding equilibrium price. Also let m∗

1 and m∗
2 be the corresponding opti-

mal length in equilibrium, m∗
1 ⩽ m∗

2. Then, by the optimality of p∗, we have p∗1 =
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p(α, c1,m
∗
1, δ, κ) ⩽ p(α, c1,m

∗
2, δ, κ) < p(α, c2,m

∗
2, δ, κ) = p∗2. Similarly, we can com-

pute p∗(t) and show that p∗1(t) < p∗2(t) by the same argument for t = 1, κ−1, · · · , κ1−m∗
1 .

We can also prove the statement for transaction costs following the same proce-
dures. □

Proofs in Section 4. Throughout this section, suppose that 2.2, 2.1 and 4.2 hold,
and the price is defined by (12).

Proof of Lemma 4.1. Consider the operator T : P → P as

Tp(ℓ) = δmin{np(ℓ/n) + α(n), c(ℓ)}.

The similar proofs as in Lemma A.1, Lemma A.2 and Lemma A.4 show that the fixed
point uniquely exists. The statements then follows from Lemma A.7 and A.8. □

Lemma A.13. There is a unique solution to pricing function (12), and the equilib-
rium price of Definition 4.1 exists.

Proof. Consider the operator T : P → P as

Tp(ℓ) = δmin

{
min

n=2,3,4,...
{np(ℓ/n) + α(ℓ, n)}, c(ℓ)

}
,

for all ℓ ∈ [0, 1]. We first show that T has a unique fixed point which is a equilibrium
price. To the existence, following the argument of Lemma A.1, it suffices to show
that T is a self-map on P and preserves orders. Fix ℓ ∈ [0, 1]. Clearly, we have
Tp(ℓ) ⩽ δc(ℓ). Since p ∈ P and c is convex, we have

Tp(ℓ) ⩾ δmin

{
min

n=2,3,...
{nδc′(0)ℓ/n+ α(ℓ, n)}, c(ℓ)

}
= δmin

{
δc′(0)ℓ+min

n
{α(ℓ, n)}, c(ℓ)

}
⩾ δmin{c′(0)ℓ, c(ℓ)} = δc′(0)ℓ

Then, Tp(ℓ) ⩾ δc′(0)ℓ and T : P → P . To see that T preserves orders, assume
p1(ℓ) ⩽ p2(ℓ) for all ℓ ∈ [0, 1]. Fix ℓ ∈ [0, 1] and n ⩾ 2, we have np1(ℓ/n) + α(ℓ, n) ⩽

np2(ℓ/n) + α(ℓ, n). Hence, we have minn{np1(ℓ/n) + α(ℓ, n)} ⩽ np2(ℓ/n) + α(ℓ, n)

for all n ⩾ 2, implying minn{np1(ℓ/n) + α(ℓ, n)} ⩽ minn{np2(ℓ/n) + α(ℓ, n)}. This
implies that Tp1(ℓ) ⩽ Tp2(ℓ) for all ℓ ∈ [0, 1]. Therefore, Knaster-Tarski Fixed Point
Theorem shows that T has at least one fixed point.
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Similar to Lemma A.2 and A.4, we next show that T kp = T kq for n ⩾ 1 − ln x̄/ ln 2

for arbitrary p, q ∈ P , where x̄ := sup{x ∈ [0, 1] : c′(x) ⩽ δc′(0)}. Let p, q ∈ P . We
claim that Tp(ℓ) = Tq(ℓ) = δc(ℓ) for ℓ ⩽ x̄. Suppose that Tp(ℓ) ̸= δc(ℓ) for ℓ ⩽ x̄.
Then, firms choose to subcontract, so it must be minn{np(ℓ/n) + α(ℓ, n)} < c(ℓ)35.
Since p(ℓ/n) ⩾ δc′(0)ℓ/n for p ∈ P ,

c(ℓ) > min
n

{np(ℓ/n) + α(ℓ, n)} ⩾ δc′(0)ℓ

Therefore, c(ℓ)/ℓ > δc′(0). This contradicts that ℓ ⩽ x̄ and convexity of c. Hence, we
have Tp(ℓ) = Tq(ℓ) for ℓ ⩽ x̄. Next, suppose that T kp(ℓ) = T kq(ℓ) for ℓ ∈ [0, 2k−1x̄].
Let ℓ ∈ [0, 2kx̄]. Since nT kp(ℓ/n) + α(ℓ, n) = nT kq(ℓ/n) + α(ℓ, n) for all n ⩾ 2 , we
can prove that T k+1p(ℓ) = T k+1q(ℓ) for ℓ ∈ [0, 2kx̄]. By induction, T kp(ℓ) = T kq(ℓ)

for all ℓ ∈ [0, 1] and k ⩾ 1− ln x̄/ ln 2.

By definition of T and pricing function (12), p is a fixed point of T if and only if it
is a solution to (12). Suppose that there are two fixed points or solutions of (12) p, q
and p ̸= q. Then, by the above induction, p = T kp = T kq = q for large enough k.
Hence, T has only one fixed point and the solution of (12) is also unique.

Let δ = 1/(1 − τ) and p∗ ∈ P be the solution to (12). The above induction implies
that there is a maximal possible length m̄ and the equilibrium length m∗ is finite.
Therefore, we can construct a feasible ℓ by iteration, starting from ℓ1 = 1, under the
price p∗. Moreover, since p∗ ∈ P and c(0) = 0, we have p∗(0) = 0. Condition (1) of
Definition (2.1) is satisfied. By definition of (12) and the profit (13), for all ℓ ∈ D,
we have36

p∗(ℓ)− δmin

{
min

n=2,3,4,...
{np∗(ℓ/n) + α(ℓ, n)}, c(ℓ)

}
= 0.

Therefore, Condition (2) and (3) are satisfied, so the solution to (12) is the equilibrium
price. □

Lemma A.14. Given the equilibrium price, the equilibrium allocation is uniquely
determined.

Proof. Let (p, ℓ1) and (p, ℓ2) be two equilibrium with the same price p and different al-
locations. Since ℓ1 = {ℓ1i } and ℓ2 = {ℓ2i } are feasible allocations, there exist m∗

1,m
∗
2 ⩾

2 and two integer sequence {n1
t}

m∗
1

t=1 and {n2
t}

m∗
2

t=1 such that ℓji = (nj
1n

j
2 · · ·n

j
t)

−1 for

35If ” = ” holds, then firms choose to home production by assumption.
36It is also valid for ℓ ∈ [0, 1].
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nj
1+ · · ·+nj

1n
j
2 · · ·n

j
t−1 < i ⩽ nj

1+ · · ·+nj
1n

j
2 · · ·n

j
t for j = 1, 2. Suppose that m∗

1 ⩾ m∗
2

without loss of generality. That is, ℓ1 has longer chain.

If m∗
2 = 1, then, by the assumption that firms choose home production if home

production and subcontract are indifferent, it can be shown that m∗
1 = m∗

2 = 1 and
ℓ1 = ℓ2 by the bellowing argument. Thus, assume that m∗

2 > 1. At level 1, using
condition (3) of Definition 4.1, we have

π = (1− τ)p(1)−min{ min
n=2,3,...

{np(1/n) + α(1, n)}, c(1)}

= (1− τ)p(1)− n1
2p(1/n

1
2) + α(1, n1

2) = 0

= (1− τ)p(1)− n2
2p(1/n

2
2) + α(1, n2

2) = 0

Thus, n1
2 = n2

2 by the assumption that firms choose the minimum optimal number of
suppliers. If n1

s = n2
s = ns for s = 1, . . . , t and t < m∗

2, for ℓ = (n1n2 · · ·nt)
−1, then

the profit at ℓ is

(1− τ)p(ℓ)−min{ min
n=2,3,...

{np(ℓ/n) + α(ℓ, n)}, c(ℓ)}

= (1− τ)p(ℓ)− min
n=2,3,...

{np(ℓ/n) + α(ℓ, n)}

Again, by choosing the minimal minimizer, n1
t+1 = n2

t+1. Then, by induction, we have
n1
t = n2

t = nt for all t = 1, . . . ,m∗
2.

Suppose that m∗
1 > m∗

2. At level m∗
2, we have tasks ℓ = (n1n2 · · ·nm∗

2
)−1. The firms of

ℓ1 at this level choose to outsource while the firms of ℓ2 choose to home production.
That is, for t = m∗

2,

(1− τ)p(ℓ)−min{ min
n=2,3,...

{np(ℓ/n) + α(ℓ, n)}, c(ℓ)}

= (1− τ)p(ℓ)−min{n1
t+1p(ℓ/n

1
t+1) + α(ℓ, n1

t+1), c(ℓ)}

= (1− τ)p(ℓ)− n1
t+1p(ℓ/n

1
t+1) + α(ℓ, n1

t+1)

= (1− τ)p(ℓ)− c(ℓ) = 0

By the assumption that firms produce at home if home production and subcontract
are indifferent, it should be m∗

1 = m∗
2. Therefore, ℓ1 = ℓ2. □

Proof of Proposition 4.1. The statement follows from the proof of Lemma A.13 and
Lemma A.14 □
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Proof of Proposition 4.2. For the first statement, let τ1 ⩽ τ2 and δ1, δ2 be the cor-
responding parameters of transaction costs with δ1 ⩽ δ2. Also, let Ti be the corre-
sponding operator for di, i = 1, 2. Clearly, T1p ⩽ T2p for all p in P . By iteration, we
have T1T1p ⩽ T1T2p ⩽ T2T2p or T 2

1 p ⩽ T 2
2 p. Repeat the iteration, we have the fixed

points that p∗1 = T k
1 ⩽ T k

2 = p∗2 for k → ∞.

For the assembly cost, suppose that α1(ℓ) ⩽ α2(ℓ) for all ℓ. Let Ti and p∗i be the
corresponding operator and equilibrium price with respect to αi, i = 1, 2. Fix p ∈ P .
Then, minn{np(ℓ/n) + α(ℓ, n)} ⩽ np(ℓ/n) + α2(ℓ, n). Taking the minimum on the
right hand side, we have T1p ⩽ T2p. By the similar iteration, we also have p∗1 ⩽ p∗2.
Moreover, the same technique proves the statement for home production cost c.

We can also show that the price of final good is strictly increasing in τ, c and α. Take
the home production cost for example. Let the costs be c1 < c2. Let (p∗1, ℓ1) and
(p∗2, ℓ2) be the corresponding equilibrium. Define the equilibrium price as p(c, α, δ)

under parameter c, α and δ. By the optimality of equilibrium, p∗1 = p(c1, ℓ1; δ) ⩽

p(c1, ℓ2; δ) < p(c2, ℓ2; δ) = p∗2. Thus, the price of final good is increasing in home pro-
duction cost. Similarly, we can prove that the price of final good is strictly increasing
in transaction cost and assembly cost. □

Lemma A.15. Suppose that α(ℓ, n) is increasing in ℓ. If p is the solution of pricing
function (12), then it is strictly increasing in ℓ.

Proof. Suppose that p ∈ P is strictly increasing in ℓ. Let ℓ1 ⩽ ℓ2. Then,

min
n

{np(ℓ1/n) + α(ℓ1, n)} ⩽ np(ℓ1/n) + α(ℓ1, n)

< np(ℓ2/n) + α(ℓ2, n) for all n ⩾ 2.

Hence, minn{np(ℓ1/n)+α(ℓ1, n)} < minn{np(ℓ2/n)+α(ℓ2, n)}. Since c is also strictly
increasing,

Tp(ℓ1) = δmin{min
n

{np(ℓ1/n) + α(ℓ1, n)}, c(ℓ1)}

< δmin{min
n

{np(ℓ2/n) + α(ℓ2, n)}, c(ℓ2)}

= Tp(ℓ2)

Tp(ℓ) is also strictly increasing. Therefore, the fixed point TNp(ℓ), for large enough
N , is also strictly increasing. By Lemma A.13, the solution is unique and equaled to
the fixed point of T , so the solution of (12) is strictly increasing. □



47

Proof of Lemma 4.2. (⇒) Let ℓ, ℓ′ ∈ [0, 1] with ℓ ̸= ℓ′ and θ ∈ (0, 1). Since t(n, .) is
strictly concave in ℓ,

min
n=2,3,...

{
nδc

(
θℓ+ (1− θ)ℓ′

n

)
+ α(n)− c(θℓ+ (1− θ)ℓ′)

}
= min

n=2,3,...
{t(θℓ+ (1− θ)ℓ′) + α(n)}

> min
n=2,3,...

{θt(ℓ/n) + (1− θ)t(ℓ′/n) + α(n)}

⩾ min
n=2,3,...

{θ(t(ℓ/n) + α(n)) + (1− θ)(t(ℓ′/n) + α(n))}

⩾ θ min
n=2,3,...

{t(ℓ/n) + α(n)}+ (1− θ) min
n=2,3,...

{t(ℓ′/n) + α(n)}

Thus, the function f(ℓ) := minn{nδc(ℓ/n)+α(n)}−c(ℓ) is strictly concave. Together
with f(0) > 0, the root ℓ̂ ∈ (0, 1] is unique. Therefore, fixing ℓ ⩽ ℓ̂, we have f(ℓ) ⩾ 0

and then

c(ℓ) ⩽ min
2,3,...

{nδc(ℓ/κ) + α(n)}.

So, Tδc(ℓ) = δc(ℓ). Hence, δc(ℓ) is a fixed point of T considering only ℓ ∈ [0, ℓ̂].

Fixing ℓ ∈ (ℓ̂, 2ℓ̂]. Observe that p(ℓ/n) = δc(ℓ/n) for all n ⩾ 2. Then, since f(ℓ) < 0,
we have

p(ℓ) = δmin{ min
n=2,3,...

{np(ℓ/n) + α(n)}, c(ℓ)}

= δmin{ min
n=2,3,...

{nδc(ℓ/n) + α(n)}, c(ℓ)}

< δc(ℓ).

Fixing ℓ ∈ (2ℓ̂, 22ℓ̂]. Observe that p(ℓ/2) < δc(ℓ) for ℓ/2 ∈ (ℓ̂, 2ℓ̂) and p(ℓ/n) = δc(ℓ/n)

for n > 2 and ℓ/n < ℓ̂. Again, since f(ℓ) < 0, we have

p(ℓ) = δmin{ min
n=2,3,...

{np(ℓ/n) + α(n)}, c(ℓ)}

⩽ δmin{ min
n=2,3,...

{nδc(ℓ/n) + α(n)}, c(ℓ)}

< δc(ℓ).

By iteration, p(ℓ) < δc(ℓ) for all ℓ ∈ (ℓ̂, 2N ℓ̂]. Hence, we obtain that p(ℓ) < δc(ℓ) for
all ℓ̂ < ℓ ⩽ 1 when N is large enough.

(⇐) This is done by the definition of equilibrium price p and strict concavity of
function f . □
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Proof. By Lemma 4.2, there is ℓ̂ such that p(ℓ) = δc(ℓ) for all ℓ ⩽ [0, ℓ̂], so p′(ℓ) =

δc′(ℓ) > 0 and p′′(ℓ) = dc′′(ℓ) > 0 for all ℓ ∈ [0, ℓ̂). Considering ℓ ∈ (ℓ̂, 1). Lemma 4.2
implies that p(ℓ) = δminn=2,3,...{np(ℓ/n) + α(n)} for all ℓ > ℓ̂.

Considering ℓ ∈ (ℓ̂, 2ℓ̂), we have p(ℓ) = δminn=2,3,...{nδc(ℓ/n) + α(n)}. Relaxing the
choice set of n from {2, 3, . . . } to [2,∞). Define the optimal choice n∗(ℓ) as

n∗(ℓ) := argmin
n⩾2

{nδc(ℓ/n) + α(n)}.37

The first order condition is r(n, ℓ) := δc(ℓ/n) − (ℓ/n)δc′(ℓ/n) + α′(ℓ/n) = 0. By
Implicit Function Theorem,

∂n∗

∂ℓ
= −∂r

∂ℓ

/
∂r

∂n∗ =
c′′(ℓ/n∗)ℓ/n∗2

c′′(ℓ/n∗)ℓ2/n∗3 + α′′(n)
.

Hence, ∂n∗(ℓ)/∂ℓ > 0 by the assumption that c is strictly convex and α is con-
vex. Since s(n; ℓ) := nδc(ℓ/n) + α(n) is strictly increasing in ℓ and s′′(n; ℓ) =

(ℓ2/n3)δc′′(ℓ/n) + α′′(n) > 0, the curve s(n; ℓ) on s(n) − n plane is strictly con-
vex and shifts upward as ℓ increases. Moreover, the minimum point of s(n; ℓ) shifts
to right as ℓ increases since ∂n∗(ℓ)/∂ℓ > 0. Now, restrict n back to the grids n ⩾ 2.
Since s(ℓ;n) shifts upward and the minimum point shifts to right as ℓ increases, the
optimal grid n∗(ℓ) is increasing in ℓ.38 Therefore, given n∗, there is a neighborhood
U(n∗) ⊂ (ℓ̂, 2ℓ̂) such that n∗(ℓ′) = n∗ for all ℓ′ ∈ U(n∗).

Suppose that n∗(ℓ) = n∗ for a fixed ℓ ∈ (ℓ̂, 2ℓ̂). Then, ℓ must be on the neighborhood
U(n∗). If ℓ is not in the boundary of U(n∗), then p(ℓ′) = δ2n∗c(ℓ′/n∗) + δα(n∗) for
ℓ′ ∈ U(n∗). Given c ∈ C2, this implies that p′(ℓ′) = δ2c′(ℓ′/n∗) > 0 and p′′(ℓ′) =

δ2c′′(ℓ′/n∗)/n∗ > 0 for ℓ′ ∈ U(n∗). If ℓ is on the boundary of U(n∗), we exclude
it. Since the optimal n∗(ℓ)’s are discrete and countable points, the set of boundary
points of such U has measure 0. Since ℓ ∈ (ℓ̂, 2ℓ̂) is arbitrary, p′(ℓ) > 0 and p′′(ℓ) > 0

for almost all ℓ in (ℓ̂, 2ℓ̂).

Denote p(ℓ) by q(ℓ) for ℓ ∈ (ℓ̂, 2ℓ̂). Then, q′ > 0 and q′′ > 0 almost everywhere. Fixing
ℓ ∈ (2ℓ̂, 22ℓ̂). Again,

p(ℓ) = δ min
n=2,3,...

{np(ℓ/n) + α(n)} = δn∗(ℓ)q(ℓ/n∗(ℓ)) + α(n∗(ℓ)).

37The maximum theorem implies that n∗(ℓ) is single-valued and continuous if we restrict the
upper bound on n.

38This can be seen by drawing the plot. n∗(ℓ) is not "strictly" increasing since the minimum grid
may be the same as ℓ increases.
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Similarly, let N ⊂ (2ℓ̂, 22ℓ̂) be the neighborhood of ℓ such that n∗(ℓ′) = n∗(ℓ) = n∗

for all ℓ′ ∈ N . Excluding the boundary points of such neighborhood, suppose that
ℓ is not on the boundary of N. If n∗ = 2, then p(ℓ′) = δn∗q(ℓ′/n∗) + δα(n∗) so that
p′(ℓ′) = δq′(ℓ′/n∗) > 0 and p′′(ℓ′) = (δ/n∗)q′′(ℓ′/n∗) > 0 for ℓ′ ∈ N . If n∗ > 2,
then p(ℓ′) = δn∗δc(ℓ′/n∗) + δα(n∗) so that p′(ℓ′) = δ2c′(ℓ′/n∗) > 0 and p′′(ℓ′) =

δ2c′′(ℓ′)/n∗ > 0 for all ℓ′ ∈ N . Either case gives that p′(ℓ) > 0 and p′′(ℓ) > 0 for
ℓ ∈ (ℓ̂, 2ℓ̂) almost everywhere.

Repeating the process, we can conclude that p′(ℓ) > 0 and p′′(ℓ) > 0 for almost all
ℓ ∈ [0, 2kℓ̂]. The conclusion follows by large enough k. □
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