
Temporal-Difference Learning with State-Action-Dependent
Discounting

Chien-Hsiang Yeh∗

Australian National University

June 19, 2024

Abstract. This paper extends model-free learning algorithms, including Q-learning,
SARSA, and double Q-learning to the learning with state-action-dependent discount
factors. We allow the discount factor to be greater than one with positive proba-
bility, but the expected multiplicative of discount factors satisfies the "eventually
discounting" condition in the sense that we replace β < 1 by ρ(L) < 1, where
ρ(L) denotes the spectral radius of an appropriate matrix dominating the expected
discounted future value.

Keywords: State-action-dependent discounting, Eventual discounting, Q-learning,
SARSA(0), double Q-learning

1. Introduction

Reinforcement learning algorithms, such as Q-learning introduced by Watkins (1989),
learn the optimal actions from the interaction between agents and environments. In
reinforcement learning, the discount factor is a meta-parameter of the performance of
learning and is often set to be a less-than-one constant. However, in economics and
finance, it is well-known that discount factors vary over time and are state-action-
dependent discounting (Cochrane, 2011, Hills and Nakata, 2018). For example, asset
pricing models consider stochastic discount factors, a function of risk preference, and

∗Email: chien.yeh@anu.edu.au. The author thanks Prof. John Stachurski for the guidance and
suggestions. The author also thanks Assoc. Prof. Timothy Kam and Prof. Fedor Iskhakov for the
invaluable comments.

1

mailto:chien.yeh@anu.edu.au

2

the current and future state-dependent consumption levels (Lucas Jr, 1978, Campbell
and Ammer, 1993, Rosenberg and Engle, 2002, Cochrane, 2009, 2011, Hansen and
Renault, 2010).

To apply Q-learning in economic or finance models, it is necessary to generalize the
constant discounting to stochastic state-action-dependent discounting. In particular,
we are interested in the case that the discount factor may be greater than one with
a positive probability. It has been noted by Nakata (2016), Hills and Nakata (2018)
and Hubmer et al. (2021) point out that if discount factors are defined as reciprocals
of gross interest rate, they exhibit dynamic behavior and may occasionally exceed
one.

In existing literature, Yoshida et al. (2013) show the convergence of Q-learning with
state-dependent discount factors and provide a framework to optimize the state-
dependent discount function, demonstrating superior performance compared to a
constant discount factor in their simulation. Similarly, Sharma et al. (2021) explore
the convergence of Q-learning and SARSA algorithms with both state and action-
dependent discount factors. However, both of them assume that the discount factors
are strictly less than one, whence their Bellman operator and Q-factor Bellman op-
erator are evidently contraction maps.

To address this gap, this paper shows the convergence of three model-free reinforce-
ment learning algorithms in finite Markov decision process under eventually dis-
counting circumstances. These algorithms include the Q-learning, on-policy learning
SARSA, and double Q-learning algorithms (Watkins and Dayan, 1992, Singh et al.,
2000, Hasselt, 2010).

Following the assumptions outlined in Stachurski and Zhang (2021), we assume that
the discount factors are eventually discounting: for all action policies σ there exists
a nσ ∈ N such that

sup
x
Ex

nσ−1∏
t=0

β(Xt, σ(Xt), Xt+1) < 1,

where β is a function of states Xt and actions/policies σ(Xt+1) referred to as discount
factors.1 In words, the dynamics exhibit eventual discounting when the expected
multiplicative of discount factors are eventually less than one for any policies.

1{Xt}t⩾0 is a Markov process defined in Section 2.1.

3

Our conditions do not rule out βt = β(Xt, σ(Xt), Xt+1) > 1 with positive probability.
On the other hand, the conventional proofs of the convergences for the Q-learning,
SARSA, and double Q-learning rely on the fact that the discount factor is strictly
less than one, whence the Bellman operator is contracting (Watkins and Dayan, 1992,
Tsitsiklis, 1994, Bertsekas and Tsitsiklis, 1995, Singh et al., 2000, Hasselt, 2010).

We further analyze the contraction of the Bellman operator in the weighted norm
of the eigenvector corresponding to the spectral radius. This further provides the
convergence rates and error bounds for dynamic programming algorithms when there
exists state-action-dependent. We use this fact to pin down the bound for optimal
Q-factor.

Finally, we extend the Stochastic Approximation algorithm and Q-learning to cases
with concave operators. Since a concave operator may have a unique fixed point
and be globally stable, Stochastic Approximation with a concave operator should
converge whenever it is bounded. This provides an alternative method to prove the
convergence of Q-learning.

Related literature - Regarding action-dependent discounting, endogenous time prefer-
ences or Uzawa time preference are broadly studied in small open economies such as
Obstfeld (1990), Mendoza (1991), Schmitt-Grohé and Uribe (2003), Vasilev (2022),
Durdu et al. (2009).

The related literature in the Markov decision process with state- or action-dependent
discount factors includes Wei and Guo (2011), Minjárez-Sosa (2015), Wu et al. (2015),
Wu and Zhang (2016), Jasso-Fuentes et al. (2022). The literature about the theory
of dynamic programming with state-dependent stochastic discounts in economics and
finance includes Stachurski and Zhang (2021), Toda (2021), Sargent and Stachurski
(2023), Toda (2023).

The applications of Q-learning in economics are as follows. Park and Ryu (2022) study
suppliers’ collusion behaviors concerning supply chain ethics and transparency with
Q-learning agents. Through simulations, they show that suppliers tend to exhibit
low levels of ethics and transparency. Neuneier (1997) utilize Q-learning to study
the optimal asset allocation. Waltman and Kaymak (2008) use Q-learning to model
the learning behavior of firms in repeated Cournot oligopoly games and find that
Q-learning firms learn to collude with each other. Calvano et al. (2020) finds that Q-
learning artificial intelligence autonomously learns to charge supracompetitive prices

4

in an oligopoly model of repeated price competition. Charpentier et al. (2021) conduct
a comprehensive survey on the applications of reinforcement learning in economics
and finance.

The paper is structured as follows. Section 2.1 introduces the framework and re-
inforcement learning algorithms. Section 3 presents the main results of the conver-
gences. Section 5 discusses the stability of algorithms. Section 6 extends Stochastic
Approximation and Q-learning to cases with concavity.

2. Q-learning, SARSA, and Double Q-learning

In this section, we introduce the Markov decision process and the model-free learning
algorithms, including Q-learning, SARSA, and double Q-learning.

2.1. Background. A finite Markov decision process (MDP) is a tuple (X,A,Γ, β, P, r)
satisfying that (i) X and A are finite state space and action space, respectively, (ii)
Γ is a nonempty correspondence from X → A, referred to as the feasible correspon-
dence, which defines the feasible state-action pairs G := {(x, a) ∈ X × A : a ∈ Γ(x)},
(iii) β : G × X → R+ is a discount factor function, (iv) r : G × X → R is the reward
function, and (v) a stochastic kernel P : G×X→ R+ satisfying

∑
x′∈X P (x, a, x′) = 1

for all (x, a) ∈ G.

Given an MDP M , the set of feasible policies is

Σ := {σ ∈ AX : σ(x) ∈ Γ(x), ∀x ∈ X}.

An MDP is recurrent or ergodic if the Markov chain corresponding to every deter-
ministic stationary policy σ ∈ Σ consists of a single recurrent class.2 If the MDP is
recurrent, then for every policy σ ∈ Σ the induced Markov chain will eventually visit
every state; that is, every state is visited infinitely often.

To any stationary policy σ ∈ Σ and initial state x, consider a trajectory process
X := {Xt}t∈N0 taking values in state space X and controlled by policies σ(X) :=

{σ(Xt)}t∈N0 such that Xt+1 is generated by P (Xt, σ(Xt), ·) for all t ∈ N0. The
processes X and σ(X) are well-defined on some measurable space (Ω,F ,P) satisfying

2A state x is recurrent if it is eventually visited or returned to.

5

P(Xt+1 = x′|Ft) = P (Xt, σ(Xt), x
′) almost surely for any x′ ∈ X and t ∈ N0, where

Ft denotes the information set up to time t defined by

Ft := σ{X0, . . . , Xt, a0, . . . , at, r0, . . . , rt−1, β0, . . . , βt−1}.

Let rt be the reward drawn from a fixed reward distribution r : G×X→ R such that
E[rt|(x, a, x′) = (Xt, σ(Xt), Xt+1) = r(x, a, x′), where the conditional expectation of
rt is r(x, a, x′) conditioning on Xt = x, σ(Xt) = a and being governed by underlying
state transition Xt+1 = x′. The σ-value function vσ is defined by

vσ(x) := E
σ
x

[
∞∑
t=0

t−1∏
i=0

βirt

]
where βi := β(Xi, σ(Xi), Xi+1) for all i ∈ N0, Eσ

x denotes expectation conditioning
on {x0 = x} with transition probability measure P , and

∏−1
i=0 βi := 1 by convention.

The maximum total reward or value function is

v∗(x) := sup
σ

vσ(x) (x ∈ X).

A policy σ ∈ Σ is optimal if vσ = v∗. The Bellman equation is

v(x) = max
a∈Γ(x)

{
r(x, a) +

∑
x′∈X

β(x, a, x′)v(x′)P (x, a, x′)

}
(x ∈ X)

where r(x, a) :=
∑

x′∈X r(x, a, x
′)P (x, a, x′) for all (x, a) ∈ G. Given v ∈ RX, a policy

σ ∈ Σ is v-greedy if

σ(x) ∈ argmax
a∈Γ(x)

{
r(x, a) +

∑
x′∈X

β(x, a, x′)v(x′)P (x, a, x′)

}
(x ∈ X).

The Bellman operator is

Tv(x) := max
a∈Γ(x)

{
r(x, a) +

∑
x′∈X

β(x, a, x′)v(x′)P (x, a, x′)

}
(x ∈ X).

2.2. Eventual Discounting. We introduce the main assumptions imposed on state-
action-dependent discount factors as follows. Define the expected multiplicative of
discount factor dn by

dn := max
σ∈Σ

max
x∈X

{
E

σ
x

n−1∏
t=0

β(Xt, σ(Xt), Xt+1)

}
. (1)

6

We say that the MDP is eventually discounting if there is n ∈ N such that dn < 1.
In other words, the MDP is eventually discounting if the expected multiplicative of
discount factors is eventually smaller than one for any policy.

We briefly discuss the sufficient conditions for eventual discounting. Denote function
B : G×RX → R as

B(x, a, v) := r(x, a) +
∑
x′∈X

P (x, a, x′)β(x, a, x′)v(x′) ((x, a, v) ∈ G×RX).

Suppose that there exists a |X| × |X| matrix L such that

|B(x, a, v)−B(x, a, w)| ⩽
∑
x′∈X

L(x, x′)|v(x′)− w(x′)| ((x, a) ∈ G). (2)

for all v, w ∈ RX. If the spectral radius is ρ(L) < 1, we can show that it is eventually
discounting. One possible assumption is to choose L to be

Lm(x, x
′) := max

a∈Γ(x)
β(x, a, x′)P (x, a, x′) ((x, x′) ∈ X2) (3)

and assume ρ(Lm) < 1.

Lemma 2.1. If Lm defined by (3) satisfies ρ(Lm) < 1, then there exists an n ∈ N
such that dn < 1.

Given σ, define the |X| × |X| matrix Lσ by

Lσ(x, x
′) := β(x, σ(x), x′)P (x, σ(x), x′)

for all (x, x′) ∈ X× X. Induction implies∑
x′

Ln
σ(x, x

′) = Eσ
x

n−1∏
t=0

β(xt, σ(Xt), Xt+1) (x ∈ X).

Then, we can show that ρ(Lσ) < 1 if and only if there is n ∈ N such that dσn < 1,
where

dσn := max
x
E

σ
x

n−1∏
t=0

β(Xt, σ(Xt), Xt+1).

Moreover, (1) implies that there is n ∈ N such that

max
σ

dσn = max
σ

max
x

∑
x′

Ln
σ(x, x

′) < 1.

Hence, we can further show that (1) is equivalent to

max
σ

ρ(Lσ) < 1.

7

Example 2.1. In economics and finance, discount factors are frequently determined
as the reciprocals of gross real interest rates: βt = 1/(1 + it), where it ∈ R is the real
interest rate. It is well-known that real interest rates could be negative when there
is zero lower bound for nominal interest rates (Hills and Nakata, 2018, Nakata, 2016,
Hubmer et al., 2021). Hills et al. (2019) and Hubmer et al. (2021) consider an AR(1)
process: βt = Zt, where {Zt} follows

Zt+1 = ρZZt + (1− ρZ)µZ + σεεt+1 {εt}
IID∼ N(0, 1). (4)

Hubmer et al. (2021) calibrate ρZ = 0.992, µZ = 0.944, σε = 0.0006. They discretize
the process onto a grid of N = 15 states by Tauchen’s method which allows us to
write the operator L defined in (3) as

Lij = β(xi)P (xi, xj), 1 ⩽ i, j ⩽ N.

The spectral radius of matrix L is 0.9469 computed by Stachurski and Zhang (2021).

We can compute the value function and optimal policy by value function iteration,
which is summarized below.

Proposition 2.1. For an eventually discounting MDP,

(i) the value function v∗ is the unique solution to Bellman’s equation in RX,

(ii) limk→∞ T kv = v∗ for all v ∈ RX, and

(iii) a feasible policy is optimal if and only if it is v∗-greedy.

The proof can be found in Sargent and Stachurski (2023).

2.3. Q-learning. For each v ∈ RX, the Q-factor corresponding to v is the function

Q(x, a) = r(x, a) +
∑
x′∈X

v(x′)β(x, a, x′)P (x, a, x′) (x, a) ∈ G.

Denote Q∗ as the Q-factor corresponding to v∗:

Q∗(x, a) = r(x, a) +
∑
x′∈X

v∗(x′)β(x, a, x′)P (x, a, x′) (x, a) ∈ G.

The Bellman equation implies that

v∗(x) = max
a∈Γ(x)

Q∗(x, a) (x ∈ X).

8

The goal of the Q-learning algorithm is to learn Q∗(x, a) for all state-action pairs.
Denote {xt}t⩾0 as the realization of the Markov process where xt+1 is generated by
P (xt, at, ·) for t ∈ N, given {at}t⩾0. The Q-learning iterates the vector Qt ∈ RG

following the rule:

Qt+1(xt, at) =(1− αt(xt, at))Qt(xt, at)

+ αt(xt, at)

[
rt + βt max

b∈Γ(xt+1)
Qt(xt+1, b)

]
,

(5)

for t ∈ N0, where xt, at, rt, and αt are the state, action, reward, and step size at time
step t. In detail, given realized {(xt, at)}t∈N−0, αt(x, a) ∈ [0, 1] is a step-size coefficient
that αt(x, a) = 0 for all (x, a) ̸= (xt, at); that is, αt is set to zero for those are outside
of the support of {(xt, at)}t∈N0 . Moreover, rt is a random sample of reward that
E[rt|(x, a, x′) = (xt, at, xt+1)] = r(x, a, x′), βt is a random sample of discount factor
that E[βt|(x, a, x′) = (xt, at, xt+1)] = β(x, a, x′), and xt+1 is a random successor state
generated by P (xt, at, ·).

2.4. SARSA. We follow the terminology in Singh et al. (2000). The update rule for
SARSA follows

Qt+1(xt, at) =[1− αt(xt, at)]Qt(xt, at)

+ αt(xt, at) [rt + βtQt(xt+1, at+1)] ,
(6)

where at+1 is determined by some learning policy introduced, and αt(x, a) ∈ [0, 1]

with αt(x, a) = 0 for (x, a) ̸= (xt, at). Hence, SARSA is an on-policy algorithm, and
its convergence depends on the learning policy.

A learning policy π is a set of probabilities Pr(·|x, t, Q, nt(x)) such that action a ∈ A

is selected with probability Pr(a|x, t, Q, nt(x)), given the history: state x, time step
t, the current estimate Q of the optimal Q-value, the number of times, nt(x), that
state x has been visited before time t. We say that a learning policy is greedy if it
always selects the action that has the highest current Q-value.

A learning policy π is a greedy-in-the-limit-with-infinite-exploration (GLIE) learning
policy if it is the set of probabilities Pr(a|x, t, Q, nt(x)) following two properties:

(a) each state is visited infinitely often, and each action is executed infinitely often
in every state;

(b) in the limit, the learning policy is greedy with respect to the Q-value function
with probability 1.

9

An example of a GLIE learning policy is ε-greedy exploration: at time step t in state
x, picks the greedy action with probability 1−εt(x), and a random exploration action
with probability εt(x) = c/nt(x) for 0 < c < 1.

A learning policy is restricted rank-based randomized (RRR) if it selects actions
probabilistically according to the ranks of Q-values: Pr(a|x, t, Q) = PR(ρ(Q, x, a)),
where ρ(Q, x, a) is the rank of action a in state x based on its action value Q(x, a)

for all a, and PR : {1, . . . , |A|} → R maps action ranks to probabilities such that
PR(1) ⩾ PR(2) ⩾ · · · ⩾ PR(|A|) and

∑|A|
i=1 P

R(i) = 1. As an example, Q-learning is
a SARSA iteration with an RRR learning policy that PR(1) = 1 and PR(i) = 0 for
i = 2, . . . , |A|.

We say that Qt is generated by SARSA iteration ((6)) with a GLIE (RRR) learning
policy π if at+1 is selected by a GLIE (RRR) learning policy with Q = Qt. The key
difference between GLIE and RRR learning policies is that a GLIE learning policy has
a decaying exploration such that the learning policy converges to the greedy policy
over time, while an RRR learning policy has a persistent exploration. Therefore, Qt

generated by SARSA with a GLIE learning policy will converge to optimal Q-value
Q∗, while Qt may not converge to Q∗ if the SARSA iteration follows an RRR learning
policy.

Given a learning policy with ranking by Q-value, ρ(Q, x, a), and ranking probability,
PR, let Q̄ be the corresponding Q-factor satisfying

Q̄(x, a) := r(x, a) +
∑
x′∈X

P (x, a, x′)β(x, a, x′)
∑
a′∈A

PR(ρ(Q̄, x′, a′))Q̄(x′, a′)

for (x, a) ∈ G. Given β(x, a, x′) ≡ β is constant, Singh et al. (2000) prove that Qt

value computed by SARSA with a GLIE learning policy converges to optimal Q∗,
and Qt updated with an RRR learning policy converges to the Q-factor function, Q̄,
corresponding to that learning policy.

On the other hand, the ranking policy can depend on (x, a) pair only without refer-
encing Q-factor. Let Π := {f : A → {1, 2, . . . , |A|} : f is a bijection} denote the set
of permutations of A, where each f ∈ Π ranks actions. A restricted policy π̄ : X→ Π

ranks actions in each state without action value Q. That is, π̄(x, a) := π̄(x)(a) is the
assigned rank of action a in state x. Given ranking probability PR, PR(π̄(x, a)) is the
probability that the policy selects action a in state x under restricted policy π̄ that

10

ranks a. The Q-factor of a restricted policy π̄, denoted Q̄π, satisfies

Q̄π̄(x, a) = r(x, a) +
∑
x′∈X

P (x, a, x′)β(x, a, x′)
∑
a′∈A

PR(π̄(x′, a′))Q̄π̄(x′, a′)

for (x, a) ∈ G. We say a restricted policy π̄ is optimal under probabilities of ranks
PR if

π̄ ∈ argmax
π∈Π

Q̄π.

Also, the greedy restricted policy for a Q-value function Q is π̄(x, a) = ρ(Q, x, a),
which ranks actions with their corresponding Q-values. Singh et al. (2000) shows
that the greedy restricted policy with respect to Q̄ (estimated by SARSA with an
RRR learning policy) is an optimal restricted policy.

2.5. Double Q-learning. Given random variables X1, . . . , Xn, sinceE(maxi{Xi}) ⩾
maxiE(Xi) by Jensen inequality, Q-learning is known to overestimate optimal values
during experiments. That is, maxb Qt(xt+1, b) is an estimate for E{maxbQt(xt+1, b)},
rather than for maxbE[Qt(xt+1, b)] as desired, where the expectation is the average
over all possible runs of the same experiments, and Qt iteration is a sample mean
that approximates Q∗. To avoid overestimation, Hasselt (2010) introduces double
Q-learning, as outlined in Algorithm 1.

There are two Q-functions in double Q-learning: QA and QB. Each Q-function, say
QA, is updated with another Q-value, QB, with QA-greedy action a∗. Since QA and
QB update with different sets of experiment samples, QB is an unbiased estimate for
Q-value at QA-greedy action. Hasselt (2010) illustrates that since E[QB(x′, a∗)] ⩽

maxaE[Q
A(x′, a)], double Q-learning may underestimate the action value.

Hasselt (2010) shows the convergence of double Q-learning assuming a constant dis-
count factor β < 1. As illustrated in Algorithm 1, we assume that β is a random
variable observed at the time that the Q-functions are updated. Moreover, β is gov-
erned by a parameterized function such that there exists eventual discounting.

3. Main Results

This section presents the assumptions and main results for the convergence of Q-
learning, SARSA, and double Q-learning with state-action-dependent discount fac-
tors.

11

Algorithm 1: Double Q-learning

1 Initialize QA, QB, x

2 repeat
3 Choose a, based on QA(x, ·) and QB(x, ·). Observe r, β, x′

4 Choose (e.g. random) either UPDATE(A) or UPDATE(B)
5 if UPDATE(A) then
6 Define a∗ = argmaxa Q

A(x′, a)

7 QA(x, a)← QA(x, a) + α(x, a)
(
r + βQB(x′, a∗)−QA(x, a)

)
8 else if UPDATE(B) then
9 Define b∗ = argmaxaQ

B(x′, a)

10 QB(x, a)← QB(x, a) + α(x, a)
(
r + βQA(x′, b∗)−QB(x, a)

)
11 end
12 x← x′

13 until end

3.1. Assumptions and Convergences. We first introduce the standard Robbins-
Monro conditions for the stochastic approximation algorithm.

Let Ft be the information field up to time t:

Ft = σ{x0, . . . , xt, a0, . . . , at, α0, . . . , αt, Q0, . . . , Qt, r0, . . . , rt−1, β0, . . . , βt−1} (7)

Let Ω be the sample space of all possible trajectories of {(xt, at, rt, βt)}t∈N and F =⊗
t∈N0

Ft. Let P be the probability measure on (Ω,F). For a trajectory ω ∈ Ω,
define Tx,a(ω) ⊂ N be the set of times at which an update of Qt(x, a) is performed.

Assumption 3.1. The following conditions hold:

(a) X and A are finite;

(b) the stepsizes {αt}t∈N0 is a sequence of random variables on (Ω,P,F) such
that αt(x, a) ∈ [0, 1], αt(x, a) = 0 for t /∈ Tx,a(ω) and∑

t∈Tx,a(ω)

αt(x, a) =∞,
∑

t∈Tx,a(ω)

α2
t (x, a) <∞

for all (x, a) ∈ G and P-almost all ω ∈ Ω; and

Assumption 3.1 implies that each state-action pair will be visited infinitely many times
by temporal-difference learning, and αt(x, a)→ 0 for each (x, a) ∈ G. Next, we outline

12

the assumptions associated with state-action-dependent discounting. Define a spectral
radius of a |X| × |X| matrix L by ρ(L) := max{|λ| ∈ Rn : λ is an eigenvalue of L}.

Assumption 3.2 (eventual-discounting). For any σ ∈ Σ, ρ(Lσ) < 1, where Lσ(x, x
′) :=

β(x, σ(x), x′)P (x, σ(x), x′) for all (x, x′) ∈ X× X.

Assumption 3.3 (eventual-discounting). There is a non-negative |X| × |X| matrix L

such that β(x, a, x′)P (x, a, x′) ⩽ L(x, x′) for all (x, a, x′) ∈ G× X and ρ(L) < 1 .

Assumption 3.2 or 3.3 implies that the MDP is eventually discounting. Compared to
a constant discount factor, Assumption 3.2 and 3.3 are more general in the sense that
discount factors are states and actions dependent and can exceed one under some
states and actions. Moreover, Assumption 3.3 is sufficient to Assumption 3.2. We
can show that the policy operator or the Bellman operator is globally stable if either
Assumption 3.2 or 3.3 holds. As discussed in Section 2.2, the assumptions imply that
there is n ∈ N such that

sup
σ∈Σ

sup
x∈X

E
σ
x

n−1∏
t=0

βt < 1

where βt = β(xt, σ(xt), xt+1) and Eσ
x denote the expectation conditioning on x0 = x

and the transition probability follows P (x, σ(x), x′) for all (x, x′) ∈ X× X.

The convergences of Q-learning, SARSA, and double Q-learning are presented below
with the above assumptions, in particular, with the state-action-dependent discount
factors and eventual discounting.

Proposition 3.1. If Assumption 3.1 holds, and either Assumption 3.2 or 3.3 holds,
then {Qt}t⩾0 generated by Q-learning algorithm (5) converges to Q∗ w.p.1..

Proposition 3.2. If MDP is recurrent, Assumption 3.1 is satisfied, and either As-
sumption 3.2 or 3.3 holds, then the SARSA iterate {Qt}t⩾0 , generated by (6), with a
GLIE learning policy π converges to Q∗ w.p.1. and the corresponding learning policy
πt converges to the optimal policy σ∗ w.p.1..

Proposition 3.3. If MDP is recurrent, Assumption 3.1 is satisfied, either Assump-
tion 3.2 or 3.3 holds, and Pr(at+1 = a|Qt, xt+1) = PR(ρ(Qt, xt+1, at+1)), then the
SARSA iterate {Qt}t⩾0 , generated by (6), with an RRR learning policy converges to
Q̄ w.p.1. Moreover, the greedy restricted policy is the optimal restricted policy.

13

Proposition 3.4. If MDP is recurrent, Assumption 3.1 holds, and either Assumption
3.2 or 3.3 holds, and both QA and QB update infinitely often, then both {QA

t }t⩾0 and
{QB

t }t⩾0 converge to optimal Q-value Q∗ w.p.1.

4. Proofs for Main Results

In this section, we provide the proofs for the propositions in Section 3.1.

4.1. Preliminaries. We denote ∥ · ∥ as the maximum norm ∥ · ∥∞. For any positive
vector w ∈ Rn, define the weighted maximum norm ∥ · ∥w by

∥v∥w := max
x

|v(x)|
w(x)

(v ∈ Rn).

A self-map F on U is globally stable if F has a unique fixed point u∗ and F ku → u∗

for all u ∈ U .

4.2. Proofs of Proposition 3.1. We first show the convergence of Q-learning it-
eration. To apply stochastic approximation, define the Q-factor Bellman operator
H : RG → R

G by

HQ(x, a) := E(x,a)r(x, a, x
′) +E(x,a)

[
β(x, a, x′) max

b∈Γ(x′)
Q(x′, b)

]
= B

(
x, a,max

b
Q(·, b)

)
((x, a) ∈ G, Q ∈ RG)

We can verify that Q∗ is the fixed point of H. The proof is completed by the following
lemmas. We first show that H is a contraction map under some weighted norm. To
simplify the notation, we define Mq(x) := maxa q(x, a) for all x ∈ X and all q ∈ RG

in the following lemmas.

Lemma 4.1. If Assumption 3.2 holds, then there exists a positive vector φ ∈ RG and
γ < 1 such that ∥HQ−HR∥φ ⩽ γ∥Q−R∥φ for all Q,R ∈ RG.

Proof. Let Assumption 3.2 hold. Proposition 2.1 implies that v∗ is the unique fixed
point to T . Define Q∗ ∈ RG by

Q∗(x, a) = r(x, a) +Ex,aβ(x, a,X
′)v∗(X ′) ((x, a) ∈ G.)

Since v∗ = Tv∗, we have

v∗(x) = max
a∈Γ(x′)

{r(x, a) +Ex,aβ(x, a,X
′)v∗(X ′)} = max

a∈Γ(x)
Q∗(x, a),

14

for all x ∈ X. It implies

HQ∗(x, a) = r(x, a) +Ex,a

[
β(x, a,X ′) max

a′∈Γ(X′)
Q∗(X ′, a′)

]
= r(x, a) +Ex,aβ(x, a,X

′)v∗(X ′) = Q∗(x, a)

for all (x, a) ∈ G. Hence, Q∗ is the fixed point of H. Next, we construct the weighted
vector φ by considering the constant reward r̂(x, a, x′) ≡ −1 for all (x, a, x′) ∈ G×X.
Since there is a unique fixed point Q̂ ∈ RG when r̂ = −1, we have3

Q̂(x, a) = HQ̂(x, a) =
∑
x′

P (x, a, x′)[r̂(x, a, x′) + β(x, a, x′)max
a′

Q̂(x′, a′)]

= −1 +
∑
x′

P (x, a, x′)β(x, a, x′)MQ̂(x′)

⩽ −1 + max
a∈Γ(x)

∑
x′

P (x, a, x′)β(x, a, x′)MQ̂(x′) ((x, a) ∈ G)

Taking the maximum over A on the left, we obtain

MQ̂(x) ⩽ −1 + max
a∈Γ(x)

∑
x′

P (x, a, x′)β(x, a, x′)MQ̂(x′) (x ∈ X.) (8)

Observe thatMQ̂ is the optimal value, and there exists an optimal policy σ̂ ∈ Σ such
that MQ̂ = vσ̂. Since ρ(Lσ̂) < 1, we have Ln

σ̂1 → 0 as n → ∞, and Tσ̂ is globally
stable. Then, the iteration of vσ̂ = T n

σ̂ vσ̂ = (I + Lσ̂ + · · · + Ln
σ̂)(−1) for all n ∈ N

converges and yields

MQ̂(x) = vσ̂(x) = lim
n→∞

E
σ̂
x

n∑
t=0

t−1∏
i=0

β(Xi, σ̂(Xi), Xi+1)(−1) ⩽ −1

for all x ∈ X. Hence, we have v̂ ⩽ −1. Let φ = −MQ̂ ⩾ 1. Hence, (8) implies

max
a∈Γ(x)

∑
x′

P (x, a, x′)β(x, a, x′)φ(x′) ⩽ φ(x)− 1 ⩽ φ(x)max
y

φ(y)− 1

φ(y)
= γφ(x),

3Denote 1 ∈ RX as the vector of ones.

15

where γ := maxx{(φ(x)− 1)/φ(x)} < 1. Now, for all Q,R ∈ RG, we obtain

|HQ(x, a)−HR(x, a)| =

∣∣∣∣∣∑
x′

β(x, a, x′)P (x, a, x′)(max
a′

Q(x′, a′)−max
a′

R(x′, a′))

∣∣∣∣∣
⩽
∑
x′

β(x, a, x′)P (x, a, x′)
∣∣∣max

a′
Q(x′, a′)−max

a′
R(x′, a′)

∣∣∣
⩽
∑
x′

β(x, a, x′)P (x, a, x′)max
a′
|Q(x′, a′)−R(x′, a′)|

⩽ max
a∈Γ(x)

∑
x′

β(x, a, x′)P (x, a, x′)max
a′
|Q(x′, a′)−R(x′, a′)|

⩽ max
a∈Γ(x)

∑
x′

β(x, a, x′)P (x, a, x′)φ(x′)max
y

M(|Q−R|)(y)
φ(y)

= ∥Q−R∥φ max
a∈Γ(x)

∑
x′

β(x, a, x′)P (x, a, x′)φ(x′)

⩽ ∥Q−R∥φγφ(x)
(9)

for all (x, a) ∈ G. Dividing φ(x) and taking supremum over G, we obtain the contrac-
tion ∥HQ−HR∥φ ⩽ γ∥Q−R∥φ for all Q,R ∈ RG. □

To this end, Lemma 4.1 implies that H is globally stable and has a unique fixed point
if Assumption 3.2 holds. Since 3.3 implies Assumption 3.2, H is also contractive on
some weighted supremum norm. Alternatively, we can show that H is eventually
contracting by the property of L, which bounds the expected discount factors.

Lemma 4.2. If Assumption 3.3 holds, then operator H has a unique fixed point and
is globally stable.

Proof. Consider an eventually discounted MDP. We first show that there exists k ∈ N
such that Hk is a contraction map. Let Q,R ∈ RG. Since the MDP is eventually
discounting, we obtain

|HQ(x, a)−HR(x, a)| = |B(x, a,max
a′

Q(·, a′))−B(x, a,max
a′

R(·, a′))|

⩽
∑
x′∈X

L(x, x′)
∣∣∣max

a′
Q(x′, a′)−max

a′
R(x′, a′)

∣∣∣
⩽
∑
x′∈X

L(x, x′)max
a′
|Q(x′, a′)−R(x′, a′)|

16

for all (x, a) ∈ G. Taking the maximum over A on the left, we obtain

max
a
|HQ(x, a)−HR(x, a)| ⩽

∑
x′∈X

L(x, x′)max
a′
|Q(x′, a′)−R(x′, a′)|

for all (x, a) ∈ G. Hence, we have M(|HQ − HR|) ⩽ L(M|Q − R|). Observe that
M|H2Q − H2R| ⩽ L(M|HQ − HR|) ⩽ LL(M|Q − R|) = L2(M|Q − R|). Hence,
the induction shows that

M(|HjQ−HjR|) ⩽ Lj(M|Q−R|)

⩽ ∥Lj∥∥Q−R∥.

Taking the maximum over X on the left, we obtain ∥HjQ−HjR∥ ⩽ ∥Lj∥∥Q− R∥.
Since ρ(L) < 1, the Gelfand’s formula implies that there exists k ∈ N such that
∥Lk∥ < 1. To this end, Hk is a contraction map. The Banach Contraction Mapping
Theorem implies that Hk has a unique fixed point Q∗ in RG and Q∗ = limj→∞HjkQ

for any Q ∈ RG. To see that Q∗ is the unique fixed point of H, since Hk is globally
stable, we can fix ε > 0 and choose j > 0 such that

∥Hjk(HQ∗)−Q∗∥ < ε.

This implies that ∥HHjkQ∗−Q∗∥ = ∥HQ∗−Q∗∥ < ε. Since this holds for all ε > 0,
we obtain ∥HQ∗ − Q∗∥ = 0 so that Q∗ is also a fixed point of H. Finally, by the
argument

lim
m→∞

HmQ = lim
s→∞

m=sk+t;s,t∈N
Hsk+tQ = lim

s→∞
m=sk+t;s,t∈N

Hsk(H tQ) = Q∗,

H is globally stable, and Q∗ is the unique fixed point to H. □

Lemma 4.3. If Assumption 3.3 holds, then there exists a positive vector φ ∈ RG and
γ < 1 such that ∥HQ−HR∥φ ⩽ γ∥Q−R∥φ for all Q,R ∈ RG.

Proof. Suppose Assumption 3.3 holds. Then, Lemma 4.2 implies that H has a
unique fixed point. We construct the weighted vector φ by considering the reward
r̂(x, a, x′) ≡ −1 for all (x, a, x′) ∈ G× X. Since there is a unique fixed point Q̂ ∈ RG

17

when r̂ = −1, we have

Q̂(x, a) = HQ̂(x, a) =
∑
x′

P (x, a, x′)[r̂(x, a, x′) + β(x, a, x′)max
a′

Q̂(x′, a′)]

= −1 +
∑
x′

P (x, a, x′)β(x, a, x′)max
a′

Q̂(x′, a′)

⩽ −1 +
∑
x′

L(x, x′)MQ̂(x′) ((x, a) ∈ G)

(10)

Taking the maximum over A on the left, we obtain

MQ̂(x) ⩽ −1+
∑
x′

L(x, x′)MQ̂(x′) (x ∈ X.)

Let φ̂ = −MQ̂. Then, since ρ(L) < 1 and L is non-negative, we have

MQ̂ ⩽ (I − L)−1(−1) = (I + L+ L2 + . . .)(−1) ⩽ −1.

Hence, (10) implies∑
x′

L(x, x′)φ(x′) ⩽ φ(x)− 1 ⩽ φ(x)max
y

φ(y)− 1

φ(y)
= γφ(x),

where γ := maxx{(φ(x)− 1)/φ(x)} < 1. Now, for all Q,R ∈ RG, we obtain

|HQ(x, a)−HR(x, a)| =

∣∣∣∣∣∑
x′

β(x, a, x′)P (x, a, x′))(max
a′

Q(x′, a′)−max
a′

R(x′, a′))

∣∣∣∣∣
⩽
∑
x′

L(x, x′)M|Q−R|(x′)

⩽

(∑
x′

L(x, x′)φ(x′)

)(
max

y

M|Q−R|(y)
φ(y)

)
⩽ γφ(x)max

y

M|Q−R|(y)
φ(y)

= γφ(x)∥Q−R∥φ ((x, a) ∈ G)

for all (x, a) ∈ G. Dividing φ(x, a) on both sides and taking the maximum on the
left, we obtain the contraction ∥HQ−HR∥φ ⩽ γ∥Q−R∥φ for all Q,R ∈ RG. □

The intuition of contraction in the weighted supremum norm for Q-learning is dis-
cussed as follows. Rewriting Q-learning iteration (5), we have

Qt+1(xt, at) = [1− αt(xt, at)]Qt(xt, at) + αt(xt, at) [HQt(xt, at) + wt(xt, at)] ,

18

where

wt(x, a) = rt −E(x,a)rt + max
b∈Γ(xt+1)

Qt(xt+1, b)−E(x,a)

[
max

b∈Γ(X′)
Qt(X

′, b)

]
.

It is known that if H is a contraction map, then Qt converges to the fixed point of H,
i.e., Q∗ (Tsitsiklis, 1994). Now, observe that the Q-learning iteration (5) is equivalent
to

Qt+1(xt, at)

φ(xt, at)
= [1− αt(xt, at)]

Qt(xt, at)

φ(xt, at)

+ αt(xt, at)

[
H[φ(xt, at)

Qt(xt,at)
φ(xt,at)

]

φ(xt, at)
+

wt(xt, at)

φ(xt, at)

]
,

(11)

Therefore, it is equivalent to iterate qt(x, a) := Qt(x, a)/φ(x, a) with respect to the
map H̃ defined by

H̃q := Φ−1H(Φq) (q ∈ RG).

where Φq(x, a) := φ(x, a)q(x, a) and Φ−1q(x, a) = q(x, a)/φ(x, a) for all (x, a) ∈ G

and q ∈ RG. In the above lemmas, we have φ(x, a) ≡ φ(x). If H is a contracting
map in ∥ · ∥φ norm, then H̃ is a contraction in maximum norm.

We use the following lemma of stochastic approximation to prove convergence of
algorithms. The methodology follows Jaakkola et al. (1993), Tsitsiklis (1994), Singh
et al. (2000), Melo (2001), and Hasselt (2010).

Lemma 4.4 (Singh et al. (2000)). Consider a stochastic process {(αt,∆t, Ft)}t⩾0 such
that αt,∆t, Ft : X → R and

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x)

Let Ft be a sequence of increasing σ-fields such that α0,∆0 are F0-measurable and
αt,∆t and Ft−1 are Ft-measurable for t ⩾ 1. Assume that the following statements
hold:

(a) the set of possible states X is finite;

(b) 0 ⩽ αt(x) ⩽ 1 ,
∑

t αt(x) =∞,
∑

t α
2
t (x) <∞ w.p.1;

(c) ∥E[Ft(·)|Ft]∥w ⩽ κ∥∆t∥w+ct, where κ ∈ (0, 1) and ct converges to zero w.p.1;

(d) Var[Ft(x)|Ft] ⩽ K(1 + ∥∆t∥w)2 , where K is some constant.

Then, ∆t → 0 w.p.1.

19

proof of Proposition 3.1. Suppose that all assumptions in the statement hold. Let
∆t(x, a) = Qt(x, a)−Q∗(x, a) for all (x, a) ∈ G and rearrange (5) as

∆t+1(xt, at) =(1− αt(xt, at))∆t(xt, at)

+ αt(xt, at)

[
rt + βt max

b∈Γ(xt+1)
Qt(xt+1, b)−Q∗(xt, at)

]
=(1− αt(xt, at))∆t(xt, at) + αt(xt, at)Ft(xt, at),

where we write

Ft(xt, at) = rt + βt max
b∈Γ(xt+1)

Qt(xt+1, b)−Q∗(xt, at).

We let Ft(x, a) = 0 if (x, a) ̸= (xt, at). Here, xt+1 is a random sample generated from
P (xt, at, ·) for all t ∈ N0. Let Ft = σ{Q0, x0, a0, α0, r0, β0, . . . , xt, at, αt, rt−1, βt−1} be
the history up to time t. Then, ∆t, αt and Ft−1 are Ft-measurable.

To apply Lemma 4.4, we need to show (1) ∥E[Ft(·)|Ft∥w ⩽ κ∥∆t∥w + ct, for some
κ ∈ (0, 1) and ct converges to zero w.p.1, and (2) Var[Ft(x)|Ft] ⩽ K(1 + ∥∆t∥w)2 for
some constant K. From the setup of Ft, we have

E[Ft(x, a)|Ft] =
∑
x′∈X

P (x, a, x′)

[
r(x, a, x′) + β(x, a, x′) max

b∈Γ(x′)
Qt(x

′, b)−Q∗(x, a)

]
= HQt(x, a)−Q∗(x, a)

Since HQ∗ = Q∗, Lemma 4.1 or Lemma 4.3 implies

∥E[Ft(·, ·)|Ft]∥φ = ∥HQt −HQ∗∥φ ⩽ γ∥Qt −Q∗∥φ = γ∥∆t∥φ. (12)

for some 0 < γ < 1 and positive vector φ. Moreover, since X and A are finite, we
have Var(rt|Ft) = Var(r(xt, at, X

′)) < ∞ and Var(βt|Ft) = Var(β(xt, at, X
′)) < ∞.

It implies that there exists C ∈ R such that

Var[Ft(x, a)|Ft] = E

[(
rt + βt max

b∈Γ(X′)
Qt(X

′, b)−Q∗(x, a)− (HQt(x, a)−Q∗(x, a))

)2
]

= E

[(
rt + βt max

b∈Γ(X′)
Qt(X

′, b)−HQt(x, a)

)2
]

= Var

[
rt + βt max

b∈Γ(X′)
Qt(X

′, b)

]
⩽ C(1 + ∥∆t∥φ)2.

20

Then, Lemma 4.4 shows that ∆t converges to zero w.p.1, so Qt converges to Q∗

w.p.1. □

4.3. Remainging Proofs in Section 3.1. For the stability of SARSA, we can show
that Qt computed by SARSA iteration is bounded w.p.1 by Theorem 1 of Tsitsiklis
(1994). Alternatively, note that the Q-value from Q-learning is an upper bound for Q
values of SARSA. Moreover, consider a Q-learning process with min instead of max

in the update rule:

Qt+1(xt, at) =[1− αt(xt, at)]Qt(xt, at)

+ αt(xt, at)

[
rt + βt min

b∈Γ(xt+1)
Qt(xt+1, b)

]
.

(13)

Clearly, Q-values from (13) iteration are the lower bounds for the Q-values of SARSA.
Since update rule (13) is equivalent to the negative Qt of the Q-learning (5) replacing
rt with −rt, it also converges w.p.1.4

proof of Proposition 3.2. Suppose that Assumption 3.1 and 3.3 hold. Let ∆t(x, a) =

Qt(x, a)−Q∗(x, a) for all (x, a) ∈ G. The SARSA iterate becomes

∆t+1(xt, at) = (1− αt(xt, at))∆t(xt, at) + αt(xt, at)Ft(xt, at),

where

Ft(xt, at) =rt −Q∗(xt, at) + βtQt(xt+1, at+1)

=rt + βt max
b∈Γ(xt+1)

Qt(xt+1, b)−Q∗(xt, at) + βt

[
Qt(xt+1, at+1)− max

b∈Γ(xt+1)
Qt(xt+1, b)

]
:=FQ

t (xt, at) + βt

[
Qt(xt+1, at+1)− max

b∈Γ(xt+1)
Qt(xt+1, b)

]
:=FQ

t (xt, at) + Ct(xt+1, at+1).

Define Ft(x, a) = FQ
t (x, a) = Ct(x, a) = 0 if (x, a) ̸= (xt, at). Let

Ft = σ{Q0, x0, a0, α0, r0, β0, . . . , xt, at, αt, rt−1, βt−1}

be the history up to time t. Then, ∆t, αt and Ft−1 are Ft-measurable. Since
E[FQ

t (x, a)|Ft] = HQt(x, a)−Q∗(x, a), it follows from (12) that

∥E[FQ
t (·, ·)|Ft]∥φ ⩽ γ∥∆t∥φ,

4We can also prove the convergence of the iteration (13) by the same arguments in the proofs of
Q-learning.

21

where γ < 1 and φ are obtained from Lemma 4.1 or Lemma 4.3. Therefore,

∥E[Ft(·, ·)|Ft]∥φ ⩽ ∥E[FQ
t (·, ·)|Ft]∥φ + ∥E[Ct(·, ·)|Ft]∥φ

⩽ γ∥∆t∥φ + ∥E[Ct(·, ·)|Ft]∥φ

Now, ∥E[Ct(·, ·)|Ft]∥φ converges to zero since Qt(x, a) stays bounded as discussed
at the beginning of this subsection, and a GLIE learning policy converges to the
optimal policy, whence Ct converges to zero w.p.1. Finally, since Var(rt|Ft) <∞ and
Var(βt|Ft) <∞ by the finiteness of X and A, we have Var(Ft|Ft) ⩽ C(1+∥∆t∥φ)2 for
some constant C. Therefore, Lemma 4.4 concludes that ∆t converges to zero w.p.1,
and then Qt converges to Q∗ w.p.1. □

proof of Proposition 3.3. Let the conditions of the statements hold. Let ∆t(x, a) :=

Qt(x, a)− Q̄(x, a) for (x, a) ∈ G, where Q̄ is the Q-factor corresponding to the RRR
learning policy. Rewriting (6), we have

∆t+1(xt, at) = (1− αt(xt, at))∆t(xt, at) + αt(xt, at)Ft(xt, at)

where

Ft(xt, at) := rt + βtQt(xt+1, at+1)− Q̄(xt, at)

for (x, a) ∈ G. Define Ft(x, a) = 0 if (x, a) ̸= (xt, at) and let

Ft = σ{Q0, x0, a0, α0, r0, β0, . . . , xt, at, αt, rt−1, βt−1}.

Recall that Q̄ function is

Q̄(x, a) = r(x, a) +
∑
x′∈X

P (x, a, x′)β(x, a, x′)
∑
a′∈A

PR(ρ(Q̄, x′, a′))Q̄(x′, a′) (x, a) ∈ G

Define operator S : RG → R
G by SQ(x, a) =

∑
a∈A P

R(ρ(Q, x, a))Q(x, a) for (x, a) ∈
G and Q ∈ RG. Note that for any Q,Q′ ∈ RG we have

|SQ(x, a)− SQ′(x, a)| ⩽ max
a
|Q(x, a)−Q′(x, a)| ((x, a) ∈ G).5

5See Singh et al. (2000) Appendix C.

22

Suppose that Assumption 3.3 holds. Let γ < 1 and φ be defined as Lemma 4.3.
Then, since at+1 follows the RRR learning policy, we have the expectation

|E[Ft(xt, at)|Ft]| = |E[rt + βtQt(xt+1, at+1)− Q̄(xt, at)|Ft]|

=

∣∣∣∣∣∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)SQt(x
′, a′)−

∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)SQ̄(x′, a′)

∣∣∣∣∣
⩽
∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)
∣∣SQt(x

′, a′)− SQ̄(x′, a′)
∣∣

⩽
∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)max
a′
|Qt(x

′, a′)− Q̄(x′, a′)|

⩽
∑
x′∈X

L(xt, x
′)max

a′
|Qt(x

′, a′)− Q̄(x′, a′)|

⩽
∑
x′∈X

L(xt, x
′)φ(x′)∥Qt − Q̄∥φ ⩽ γφ(xt)∥Qt − Q̄∥φ

where the second equality follows fromE(rt|Ft) = r(xt, at) and Pr(at+1 = a|Qt, xt+1) =

PR(ρ(Qt, xt, a)), the third inequality follows from the assumption of eventual dis-
counting, and the last two inequalities follow Assumption 3.3 and Lemma 4.3. On
the other hand, suppose that Assumption 3.2 holds. Let γ and φ be defined as Lemma
4.1. Similar to the inequality (9) in Lemma 4.1, we have

|E[Ft(xt, at)|Ft]| = |E[rt + βtQt(xt+1, at+1)− Q̄(xt, at)|Ft]|

⩽
∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)
∣∣SQt(x

′, a′)− SQ̄(x′, a′)
∣∣

⩽ max
a

∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)max
a′
|Qt(x

′, a′)− Q̄(x′, a′)|

⩽ max
a

∑
x′∈X

P (xt, at, x
′)β(xt, at, x

′)φ(x′)∥Qt − Q̄∥φ

⩽ γφ(xt)∥Qt − Q̄∥φ

Dividing φ(xt) and taking supremum to either one of the above inequalities, we have
∥E[Ft(·, ·)|Ft]∥φ ⩽ γ∥Qt − Q̄∥φ. Now, Lemma 4.4 shows that ∆t converges to zero
w.p.1, so Qt converges to Q̄ w.p.1. The statement that the greedy restricted policy
is optimal under PR ranking strategy follows from Theorem 3 of Singh et al. (2000),
where we consider the discounting function β(x, a, x′) instead of a constant β. □

23

proof of Proposition 3.4. Suppose that all conditions of the statement are satisfied.
By symmetry, it suffices to show that QA converges to Q∗. To apply Lemma 4.4,
let ∆t := QA

t − Q∗. Denote αt = αt(xt, at), a∗ := argmaxa Q
A(xt+1, a) and b∗ :=

argmaxbQ
B(xt+1, b). We then have

∆t(xt, at) = (1− αt)∆t(xt, at) + αt[rt + βtQ
B
t (xt+1, a

∗)−Q∗(xt, at)]

:= (1− αt)∆t(xt, at) + αtFt(xt, at)
(14)

where

Ft(xt, at) := rt + βtQ
B
t (xt+1, a

∗)−Q∗(xt, at)

= rt + βtQ
A
t (xt+1, a

∗)−Q∗(xt, at) + βt[Q
B
t (xt+1, a

∗)−QA
t (xt+1, a

∗)]

:= FQ
t (xt, at) + βt[Q

B
t (xt+1, a

∗)−QA
t (xt+1, a

∗)]

:= FQ
t (xt, at) + Ct(xt, at).

Let Ft(x, a) = FQ
t (x, a) = Ct(x, a) = 0 if (x, a) ̸= (xt, at). Recall thatE[FQ

t (xt, at)|Ft] =

HQA
t (xt, at)−HQ∗(xt, at), so we have

∥E[FQ
t (·, ·)|Ft]∥φ ⩽ γ∥∆t∥φ,

where γ < 1 and φ are defined in Lemma 4.1 or Lemma 4.3. Since Var(rt|Ft) < ∞
and Var(βt|Ft) < ∞, the variance condition of Lemma 4.4 is satisfied. Therefore,
it suffices to show that Ct(xt, at) = βt(Q

B
t (xt+1, a

∗)−QA
t (xt+1, a

∗)) converges to zero
w.p.1.

Next, we show that ∆BA
t := QB

t −QA
t converges to zero w.p.1 by Lemma 4.4. Double

Q-learning algorithm 1 implies that the update ∆t follows

if QB is updated:

∆BA
t+1(xt, at) =QB

t+1(xt, at)−QA
t+1(xt, at)

=(1− αt)Q
B
t (xt, at) + αt(rt + βtQ

A(xt+1, b
∗))−QA

t (xt, at)

=(1− αt)∆
BA
t (xt, at) + αt[rt + βtQ

A
t (xt+1, b

∗)−QA
t (xt, at)]

if QA is updated:

∆BA
t+1(xt, at) =QB

t+1(xt, at)−QA
t+1(xt, at)

=QB
t − [(1− αt)Q

A
t (xt, at) + αt(rt + βtQ

B(xt+1, a
∗))]

=(1− αt)∆
BA
t (xt, at)− αt[rt + βtQ

B
t (xt+1, a

∗)−QB
t (xt, at)].

24

Suppose that the probabilities of updating QA and QB are equal, and the selection
of updating QA or QB is independent of the sample. Then, we have

∆BA
t+1(xt, at) = (1− αt(xt, at))∆

BA
t (xt, at) + αt(xt, at)F̃t(x, a), (15)

where

F̃t(x, a) =

rt + βtQ
A
t (xt+1, b

∗)−QA
t (xt, at), w.p.1/2

−rt − βtQ
B
t (xt+1, a

∗) +QB
t (xt, at), w.p.1/2.

To use Lemma 4.4 for {∆BA
t } process, we need to show ∥E[F̃t(·, ·)|Ft]∥ ⩽ λ∥∆BA

t ∥
for some λ < 1. From the definition of F̃t, we obtain

E[F̃t(x, a)|Ft] =
1

2

[
E(rt + βtQ

A
t (xt+1, b

∗)|Ft)−QA
t (xt, at)

]
+

1

2

[
−E(rt + βtQ

B
t (xt+1, a

∗)|Ft) +QB
t (xt, at)

]
=

1

2
∆BA

t (xt, at) +
1

2
E[βt(Q

A
t (xt+1, b

∗)−QB
t (xt+1, a

∗))|Ft].

Assume E[βtQ
A
t (xt+1, b

∗)|Ft] ⩾ E[βtQ
B
t (xt+1, a

∗)|Ft]. Suppose that Assumption 3.3
holds. Let γ < 1 and φ be defined as Lemma 4.3. Since the definition of a∗ implies
QA

t (xt+1, a
∗) ⩾ QA

t (xt+1, b
∗), we have

|E{βt[Q
A
t (xt+1, b

∗)−QB
t (xt+1, a

∗)]|Ft}| = E{βt[Q
A
t (xt+1, b

∗)−QB
t (xt+1, a

∗)]|Ft}

⩽ E{βt[Q
A
t (xt+1, a

∗)−QB
t (xt+1, a

∗)]|Ft}

=
∑
x′

P (xt, at, x
′)β(xt, at, x

′)[QA
t (x

′, a∗)−QB
t (x

′, a∗)]

⩽
∑
x′

L(xt, x
′)max

a′
|QA

t (x
′, a′)−QB

t (x
′, a′)|

⩽
∑
x′

L(xt, x
′)φ(x′)∥QA

t −QB
t ∥φ

⩽ γφ(xt)∥QA
t −QB

t ∥φ

Dividing both sides by φ(xt) and taking supremum, we have

∥E[βt(Q
B
t (xt+1, ·)−QA

t (xt+1, ·))|Ft]∥φ ⩽ γ∥∆BA
t ∥φ. (16)

25

On the other hand, suppose that Assumption 3.2 holds. Let γ and φ be defined as
Lemma 4.1. The inequality (9) in Lemma 4.1 implies

|E{βt[Q
A
t (xt+1, b

∗)−QB
t (xt+1, a

∗)]|Ft}| = E{βt[Q
A
t (xt+1, b

∗)−QB
t (xt+1, a

∗)]|Ft}

⩽ E{βt[Q
A
t (xt+1, a

∗)−QB
t (xt+1, a

∗)]|Ft}

=
∑
x′

P (xt, at, x
′)β(xt, at, x

′)[QA
t (x

′, a∗)−QB
t (x

′, a∗)]

⩽ max
a

∑
x′

P (xt, at, x
′)β(xt, at, x

′)max
a′
|QA

t (x
′, a′)−QB

t (x
′, a′)|

⩽ max
a

∑
x′

P (xt, at, x
′)β(xt, at, x

′)φ(x′)∥QA
t −QB

t ∥φ

⩽ γφ(xt)∥QA
t −QB

t ∥φ.

To this end, (16) holds if Assumption 3.2 holds.

Alternatively, if we assume E[βtQ
A
t (xt+1, b

∗)|Ft] < E[βtQ
B
t (xt+1, a

∗)|Ft], then by
the fact that QB

t (xt+1, b
∗) ⩾ QB

t (xt+1, a
∗), the above argument also implies (16).

Therefore, we have

|E[F̃t(x, a)|Ft]| =
∣∣∣1
2
∆BA

t (xt, at) +
1

2
E[βt(Q

A
t (xt+1, b

∗)−QB
t (xt+1, a

∗))|Ft]
∣∣∣

⩽
1 + γ

2
∥∆BA

t ∥φ

where (1 + γ)/2 < 1. Since Var(rt|Ft) < ∞ and Var(βt|Ft) < ∞, we obtain
Var(F̃t|Ft) ⩽ K(1 + ∥∆BA

t ∥)2 for some constant K. Then, Lemma 4.4 and (15)
yield ∆BA

t → 0 w.p.1. Therefore, Ct also converges to zero w.p.1. Finally, Lemma
4.4 shows that the origin process (14) converges: ∆t = QA −Q∗ → 0 w.p.1. □

5. Stability of Q-learning

The Bellman operator of an eventually discounting MDP can be viewed as a contrac-
tion map under some weighted norm. We find that the spectral radius ρ(L) and its
corresponding eigenvector determine the convergence of the value function iteration
and other algorithms of such MDP. With this fact, we can determine the bound for
optimal Q-value Q∗.

Define a policy operator Tσ : R
X → R

X as

Tσv(x) := r(x, σ(x)) +
∑
x′

P (x, σ(x), a′)β(x, σ(x), x′)v(x′) (v ∈ RX, x ∈ X).

26

The Bellman operator can be written as Tv(x) = maxσ∈Σ Tσv(x) for all x ∈ X.
Assume further that L is irreducible such that L has an eigenvector φ corresponding
to ρ(L): Lφ = ρ(L)φ. We define the maps:

T̃σv := Φ−1Tσ(Φv); T̃ v := Φ−1T (Φv); (v ∈ RX)

H̃q := Φ̂−1H(Φ̂q), (q ∈ RG)

where Φ = diag(φ), Φ̂ = diag(φ̂), and φ̂(x, a) := φ(x) for all (x, a) ∈ G. Observe that
ṽσ, ṽ and q̃ are the fixed points of T̃σ, T̃ and H̃, respectively, if and only if vσ = Φṽσ,
v∗ = Φṽ and Q∗ = Φ̂q̃ are the fixed points of Tσ, T and H, respectively. We show
that T̃σ, T̃ , and H̃ are contraction maps with modulus ρ(L), which further give the
convergence rates of T̃σ, T̃ and H̃ in the maximum norm, or the convergence rates of
Tσ, T and H in ∥ · ∥φ.

Lemma 5.1. If Assumption 3.3 holds, and L is irreducible, then Tσ, T , and H

are contraction maps in ∥ · ∥φ with modulus ρ(L), where φ is the eigenvector of L

corresponding to eigenvalue ρ(L).

Corollary 5.1. If Assumption 3.3 holds and L is irreducible, then T̃σ, T̃ and H̃ are
contraction maps with modulus ρ(L) under maximum norm.

Therefore, we see that both T and H are globally stable, and we can analyze the
convergence rates. For example, we have the following convergence rate and error
bound for value function iteration (see, e.g., Bertsekas (2022) for the proof).]

Lemma 5.2. If Assumption 3.3 holds, and L is irreducible, then

(a) ∥T kv − v∗∥φ ⩽ ρ(L)k∥v − v∗∥φ
(b) ∥T k+1v − v∗∥φ ⩽ γ∥T k+1v − T kv∥φ, where γ = ρ(L)/(1− ρ(L)).

Next, we use the contraction of H operator to find the boundedness of optimal Q∗.
It also indicates the stability of the Q-learning in the sense that the expectation
E(Qt+1(x, a)|Ft) is bounded if Qt is bounded.

Proposition 5.1. Suppose that Assumption 3.3 holds, L is irreducible, and |rt| ⩽ r̄

for all t w.p.1. Let Qt be the Q-learning iteration. Then, the following statements are
true.

(a) ∥Q∗∥φ ⩽ ∥r̄∥φ/(1− ρ(L)),

27

(b) if ∥Qt∥φ ⩽ ∥r̄∥φ/(1− ρ(L)), then ∥E(Qt+1(·, ·)|Ft)∥φ ⩽ ∥r̄∥φ/(1− ρ(L)).

Proposition 5.1 shows that the Q-learning iteration is stable in the sense that Qt is
always expected to be bounded by ∥r̄∥φ/(1−ρ(L)) for all t. Finally, note that all the
results also hold if Assumption 3.2 holds, by Lemma 4.1.

6. Learning with Concavity

In this part, we explore cases where the Q-factor Bellman operator exhibits concav-
ity. Initially, we show that if the operator in Stochastic Approximation, which has a
desired fixed point, is concave in a bounded interval, then the Stochastic Approxima-
tion iteration converges to the fixed point of that operator, provided that iterations
remain within the same interval. We next apply the result to Q-learning by assuming
that the Q-factor Bellman operator is concave.

6.1. Stochastic Approximation with Concavity. Let H : Rn → R
n be a map

on Rn such that Hx = (Hx(1), . . . , Hx(n)) for all x ∈ Rn. We are interested in
computing x such that Hx = x. Stochastic approximation algorithm consists of
updates of a vector x ∈ Rn with noisy for solving the fixed point of H. Let Ti ⊂ N
be the set of times at which an update of x(i) is performed for i ∈ {1, . . . , n}. The
Stochastic Approximation iterates

xt+1 =

xt(i), if t /∈ Ti
(1− αt(i))xt(i) + αt(i)(Hxt(i) + wt(i)), if t ∈ Ti

(17)

for all i ∈ {1, . . . , n}, where αt(i) ∈ [0, 1] is a step size parameter, wt(i) is a random
noise, and x0 ∈ Rn.

Let Ft be the σ-field of the algorithm information up to and including the point at
which the step-size αt(i) is selected, but just before the noise or update direction is
determined. Specifically, we let

Ft = σ{x0, . . . , xt, w0, . . . , wt−1, α0, . . . , αt}.

Let Ω be the sample space of all possible trajectories of {(xt, αt, wt)} and F =⊗
t∈N0

Ft. Let P be the probability measure on (Ω,F). The following two assump-
tions to stepsizes and noises are standard for Stochastic Approximation.

28

Assumption 6.1. The stepsizes {αt}t∈N0 are a sequence of random variables defined
on (Ω,F ,P) such that αt(i) ∈ [0, 1] and αt(i) = 0 for t ∈ Ti for all i and t. Moreover,
we have ∑

t∈Ti(ω)

αt(i) =∞, and
∑

t∈Ti(ω)

α2
t (i) <∞

for all i and P-almost all ω ∈ Ω.

Assumption 6.2.

(a) E[wt(i)|Ft] = 0 for all i and t.

(b) There exist constants A and B such that for all i and t

E[w2
t (i)|Ft] ⩽ A+B∥xt∥2

We assume that H is concave on some interval where it is globally stable and has a
unique fixed point.

Assumption 6.3.

(a) H is increasing and concave on [u, v] ⊂ Rn with u < v,

(b) Hv ⩽ v, and

(c) there exists an ε > 0 such that Hu ⩾ u+ ε(v − u).

Theorem 6.1. If Assumption 6.1, 6.2 and 6.3 hold, and {xt} generated by (17) is
in [u, v] with probability 1, then xt converges to x∗ with probability 1.

6.2. Q-learning with Concavity. Let c : G × X → R+ denote a cost function.
Suppose that the (future) value is adjusted by some concave function φ : R → R

before taking expectation such that the Bellman equation becomes

v(x) = min
a∈Γ(x)

Ex,aφ (c(x, a,X ′) + β(x, a,X ′)v(X ′)) . (18)

Let v∗ be a solution to (18) and define Q∗(x, a) := φ(c(x, a,X ′) + β(x, a,X ′)v∗(X ′))

for all (x, a) ∈ G. The corresponding Q-learning iteration follows

Qt+1(xt, at) = (1−αt(xt, at))Qt(xt, at)

+ αt(xt, at)

[
φ

(
ct + βt min

b∈Γ(xt+1)
Qt(xt+1, b)

)] (19)

29

where αt(x, a) ∈ [0, 1] for all (x, a) ∈ G, ct and βt satisfyE[ct|(x, a′, x′) = (xt, at, xt+1)] =

c(x, a, x′) and E[βt|(x, a, x′) = (xt, at, xt+1)] = β(x, a, x′), and xt+1 is a random suc-
cessor state generated by P (xt, at, ·), given Q0 ∈ RG. Define the Q-factor Bellman
operator H : RG → R

G by

HQ(x, a) := Ex,aφ

(
c(x, a,X ′) + β(x, a,X ′) min

b∈Γ(X′)
Q(X ′, b)

)
(20)

for all (x, a) ∈ G and Q ∈ RG.

Assumption 6.4.

(a) Both c and β are positive everywhere and bounded.

(b) φ : R → R is increasing, concave, and φ(c(x, a, x′)) > 0 for all (x, a, x′) ∈
G× X.

(c) There is K > 0 such that φ(∥c∥+ ∥β∥K) ⩽ K.

Assumption 6.4 guarantees that H(K1) ⩽ K1. It also implies that H0 is everywhere
positive and then there exists an ε > 0 such that H0 ⩾ εK1. To this end, H satisfies
Assumption 6.3.

Example 6.1. This example demonstrates a standard Q-learning. If β ∈ (0, 1), φ
is an identity map, and c is positive everywhere and bounded. Suppose that H is
defined by

HQ(x, a) = c(x, a) + βEx,a min
b∈Γ(x′)

Q(x′, b) ((x, a) ∈ G, Q ∈ RG).

Then, we have

H

(
∥c∥
1− β

1

)
(x, a) = c(x, a) + βEx,a min

a′

{
∥c∥
1− β

1(x′, a′)

}
⩽ ∥c∥+ β

∥c∥
1− β

=
∥c∥
1− β

.

Therefore, H is a self-map on [u, v], where u(x, a) ≡ 0 and v(x, a) ≡ ∥c∥/(1− β)) for
(x, a) ∈ G. Also, H0(x, a) = c(x, a) > 0 for all (x, a) ∈ G, which implies there exists
an ε > 0 satisfying H0 ⩾ ε(∥c∥/(1− β))1.

Example 6.2. Let g : R→ R be an increasing and concave map such that g(0) ⩾ 0

and there is K > 0 satisfying ∥c∥ + ∥β∥g(K) < K. Assume that c is positive

30

everywhere and bounded, and β is everywhere positive. Suppose that H is defined
by

HQ(x, a) = c(x, a) +Ex,aβ(x, a, x
′)g

(
min

b∈Γ(x′)
Q(x′, b)

)
((x, a) ∈ G, Q ∈ RG).

Then, we have H(K1)(x, a) ⩽ ∥c∥+ ∥β∥g(K) < K for any (x, a) ∈ G. Moreover, we
have H0(x, a) ⩾ c(x, a) > 0 for any (x, a) ∈ G so as there exists an ε > 0 satisfying
H0 ⩾ εK1. This example allows discount factors to be greater than one. In this
case, the convergence relies on the concavity of function g.

Lemma 6.1. If Assumption 6.4 holds, then H defined by (20) satisfies Assumption
6.3, is globally stable on [0, K1], and has a unique fixed point x∗ ∈ [0, K1].

Lemma 6.2. Suppose that Assumption 3.1 and 6.4 hold. If {Qt} is a sequence
generated by (19) with Q0 ∈ [0, K1], then {Qt} is in [0, K1] with probability 1.

Proposition 6.1. Let {Qt} be generated by (19). If Assumption 3.1 and 6.4 hold,
then Qt converges to Q∗ with probability 1.

Appendix A. Appendix

Proof of Lemma 2.1. Suppose ρ(Lm) < 1. Since ρ(Lm) = limn→∞ ∥Ln
m1∥1/n, there ex-

ists n such that ∥Ln
m1∥ < 1. Since β(x, σ(x), x′)P (x, σ(x), x′) ⩽ maxa β(x, a, x

′)P (x, a, x′)

for all (x, x′) ∈ X2 and σ ∈ Σ, we have d1 ⩽ supx L1(x). Induction yields dn ⩽

∥Ln
m1∥ < 1. □

Proof of Lemma 5.1. Assume that Assumption 3.3 holds and L is irreducible. Since
L is irreducible and ρ(L) < 1, the Perron-Frobenius Theorem implies that there is a
strictly positive eigenvector φ such that Lφ = ρ(L)φ. That is, we have diag(φ)−1Lφ ⩽

ρ(L)1. We first show that Tσ is a contraction in ∥ · ∥φ. Let v, w ∈ RX and x ∈ X. By

31

definition, we have

|Tσv(x)− Tσw(x)| =

∣∣∣∣∣∑
x′∈X

P (x, σ(x), x′)β(x, σ(x), x′)(v(x′)− w(x′))

∣∣∣∣∣
⩽
∑
x′∈X

P (x, σ(x), x′)β(x, σ(x), x′)|(v(x′)− w(x′)|

⩽
∑
x′∈X

L(x, x′)|(v(x′)− w(x′)|

⩽
∑
x′∈X

L(x, x′)φ(x′)max
y∈X

|(v(y)− w(y)|
φ(y)

=
∑
x′∈X

L(x, x′)φ(x′)∥v − w∥φ.

(21)

Dividing φ(x) on both sides, we obtain

|Tσv(x)− Tσw(x)|
φ(x)

⩽
1

φ(x)

∑
x′∈X

L(x, x′)φ(x′)∥v − w∥φ ⩽ ρ(L)∥v − w∥φ,

where the last inequality uses the fact diag(φ)−1Lφ ⩽ ρ(L)1. Taking the supremum
on the left over X, we have ∥Tσv − Tσw∥φ ⩽ ρ(L)∥v − w∥φ. Next, by rewriting (21),
we have

Tσv(x) ⩽ Tσw(x) +
∑
x′∈X

L(x, x′)φ(x′)∥v − w∥φ.

By taking the supremum over Σ of both sides, we obtain

Tv(x) ⩽ Tw(x) +
∑
x′∈X

L(x, x′)φ(x′)∥v − w∥φ.

By interchanging the role of v and w and combining the two relations, we have

|Tv(x)− Tw(x)| ⩽
∑
x′∈X

L(x, x′)φ(x′)∥v − w∥φ.

The similar argument shows that ∥Tv − Tw∥φ ⩽ ρ(L)∥v − w∥φ. Finally, we show
that H is a contraction. Fix Q,R ∈ XG. Then, we have

|HQ(x, a)−HR(x, a)| =

∣∣∣∣∣∑
x′∈X

P (x, σ(x), x′)β(x, σ(x), x′)(max
a′

Q(x′, a′)−max
a′

R(x′, a′))

∣∣∣∣∣
⩽
∑
x′∈X

L(x, x′)max
a′
|Q(x′, a′)−R(x′, a′)|

⩽
∑
x′∈X

L(x, x′)φ(x′)∥Q−R∥φ.

32

Again, the similar argument implies that ∥HQ−HR∥φ ⩽ ρ(L)∥Q−R∥φ. □

Proof of Proposition 5.1. Suppose that the assumptions in the statement hold. Since
Q∗ is the fixed point of H, r(x, a, x′) ⩽ r̄ w.p.1, and diag(φ)−1Lφ = ρ(L)1, we have∣∣∣Q∗(x, a)

φ(x)

∣∣∣ = ∣∣∣∑
x′

P (x, a, x′)

(
r(x, a, x′)

φ(x)
+

β(x, a, x′)

φ(x)
max

b
Q∗(x′, b)

) ∣∣∣
⩽
∣∣∣ r̄

φ(x)

∣∣∣+∑
x′

P (x, a, x′)β(x, a, x′)
φ(x′)

φ(x)
max

b

∣∣∣Q∗(x′, b)

φ(x′)

∣∣∣
⩽ ∥r̄∥φ +

∑
x′

L(x, x′)
φ(x′)

φ(x)
∥Q∗∥φ

⩽ ∥r̄∥φ + ρ(L)∥Q∗∥φ

for all (x, a) ∈ G. Taking the maximum on the left, we have ∥Q∗∥φ ⩽ ∥r̄∥φ +

ρ(L)∥Q∗∥φ, whence we obtain the first result. Next, with the assumption ∥Qt∥φ ⩽

∥r̄∥φ/(1− ρ(L)), we obtain∣∣∣E(Qt+1(x, a)|Ft)

φ(x)

∣∣∣ = ∣∣∣(1− αt)
Qt(x, a)

φ(x)

+ αt

∑
x′

P (x, a, x′)

(
r(x, a, x′)

φ(x)
+

β(x, a, x′)

φ(x)
max

b
Qt(x

′, b)

) ∣∣∣
⩽ (1− αt)∥Qt∥φ + αt

(
∥r̄∥φ +

∑
x′

L(x, x′)
φ(x′)

φ(x)
∥Qt∥φ

)
= (1− αt)∥Qt∥φ + αt(∥r̄∥φ + ρ(L)∥Qt∥φ)

=
∥r̄∥φ

1− ρ(L)

for all (x, a) ∈ G. Taking the maximum on the left, we conclude that

∥E(Qt+1(·, ·)|Ft)∥φ ⩽ ∥r̄∥φ/(1− ρ(L)).

□

Let E be a real Banach space where a partial ordering is defined by a cone P ⊂ E such
that x ⩽ y if and only if y−x ∈ P . We write x < y if x ⩽ y and x ̸= y. A cone is called
normal if there exists a constant N > 0 such that θ ⩽ x ⩽ y implies ∥x∥ ⩽ N∥y∥,
where θ denotes the zero element of E. An operator A : E → E is called increasing
if x, y ∈ E with x ⩽ y implies Ax ⩽ Ay. It is called concave if for any x, y ∈ E with

33

x ⩽ y and λ ∈ [0, 1], we have A(λx+(1−λ)y) ⩾ λAx+(1−λ)Ay. For any u0, v0 ∈ E

with u0 < v0, we define an order interval by [u0, v0] := {x ∈ E : u0 ⩽ x ⩽ v0}.
Du (1990) shows the following fixed-point theorem with a concave operator (See also
Zhang (2013) for the proof.)

Theorem A.1. Suppose P is a normal cone, u0, v0 ∈ E, and u0 < v0. Moreover,
A : [u0, v0] → E is an increasing operator. Let h0 = v0 − u0. If A is a concave
operator, Au0 ⩾ u0 + εh0, Av0 ⩽ v0 where ε ∈ (0, 1), then A has a unique fixed point
x∗ ∈ [u0, v0]. Moreover, for any x0 ∈ [u0, v0], the iterative sequence {xn} given by
xn = Axn+1 for n ∈ N satisfying that

∥xn − x∗∥ ⩽ M(1− ε)n (n ∈ N)

where M = N2∥h0∥ + (N + 1)N∥Bθ∥ε−2, ε ∈ (0, 1) satisfies Bθ = Au0 − u0 ⩾ εh0,
and N is the normal constant of P .

Proof of Theorem 6.1. Suppose that all the stated assumptions hold. Let {xt} be
generated by (17). Define Uk+1 = HUk and Lk+1 = HLk for all k ⩾ 0 recursively with
U0 = v, L0 = u. Assumption 6.3 implies U1 = Hv ⩽ v = U0 and L1 = Hu ⩾ u = L0.
Since H is increasing, induction yields Lk ⩽ Lk+1 and Uk+1 ⩽ Uk for all k. Since
the Du’s Theorem A.1 implies that H is globally stable on [u, v], we have Uk → x∗

and Lk → x∗. The conclusion then follows from the proof for Theorem 2 of Tsitsiklis
(1994) that for every k, there exists some tk ∈ N such that

Lk ⩽ xt ⩽ Uk for all t ⩾ tk. (22)

□

Proof of Lemma 6.1. Let Assumption 6.4 hold. Then, H is a selfmap on [0, K1] and
H0 ⩾ εK1. Let λ ∈ [0, 1] and fix q1, q2 ∈ [0, K1] with q1 ⩽ q2. Since φ is concave,

34

we have

H(λq1 + (1− λ)q2)(x, a)

= Ex,aφ
(
c(x, a,X ′) + β(x, a,X ′)min

b
{λq1(X ′, b) + (1− λ)q2(X

′, b)}
)

⩾ Ex,aφ
(
c(x, a,X ′) + β(x, a,X ′)

(
λmin

b
q1(X

′, b) + (1− λ)min
b

q2(X
′, b)
))

⩾ λEx,aφ
(
c(x, a,X ′) + β(x, a,X ′)min

b
q1(X

′, b)
)

+ (1− λ)Ex,aφ
(
c(x, a,X ′) + β(x, a,X ′)min

b
q2(X

′, b)
)

= λHq1(x, a) + (1− λ)Hq2(x, a)

for all (x, a) ∈ G. Therefore, H is concave. Since φ is increasing, H is also increasing.
It follows from the Du’s theorem A.1 that H has a unique fixed point Q∗ in [0, K1]

and there exists α ∈ (0, 1) and M > 0 such that

∥HmQ0 −Q∗∥ ⩽ αnM

for any Q0 ∈ [0, K1] and m ∈ N. □

Proof of Lemma 6.2. Let Assumption 3.1 and 6.4 hold. Fix Q0 ∈ [0, t1]. Suppose
that Qt is in [0, K1] for some t. Then, induction hypothesis and (19) imply

Qt+1(x, a) = (1− αt(x, a))Qt(x, a) + αt(x, a)φ
(
ct + βt min

b
Q(x′, b)

)
⩾ (1− αt(x, a))0 + αt(x, a)φ(ct) ⩾ 0

and

Qt+1(x, a) = (1− αt(x, a))Qt(x, a) + αt(x, a)φ
(
ct + βt min

b
Q(x′, b)

)
⩽ (1− αt(x, a))K + αt(x, a)φ(ct + βtK)

⩽ (1− αt(x, a))K + αt(x, a)φ(∥c∥+ ∥β∥K)

⩽ (1− αt(x, a))K + αt(x, a)K = K

for all (x, a) ∈ G. Therefore, we conclude Qt ∈ [0, K1] for all t ⩾ 0 with probability
1. □

Proof of Proposition 6.1. Suppose that Assumption 3.1 and 6.4 hold and let {Qt} be
generated by (19). We first rewrite Qt+1 by

Qt+1(xt, at) = (1− αt)Qt(xt, at) + αt (HQ(xt, at) + wt(xt, at))

35

where operator H is defined by (20) and wt is defined by

wt(xt, at) = φ

(
ct + βt min

b∈Γ(xt+1)
Qt(xt+1, b)

)
−Ext,atφ

(
ct + βt min

b∈Γ(xt+1)
Qt(xt+1, b)

)
.

Clearly, we have E[wt|Ft] = 0, where Ft is defined by (7). Since φ is concave,
there are constants p, q > 0 such that φ(s) ⩽ p + qs for all s. Hence, we have
φ2(s) ⩽ (p + qs)2. Since in addition Var(βt|Ft) and Var(ct|Ft) are finite, there
are constants A and B such that E[w2

t |Ft] ⩽ A + B∥Qt∥2. Therefore, Assumption
6.2 holds. The conclusion then follows from Theorem 6.1, Lemma 6.1, and Lemma
6.2. □

References

Bertsekas, D. (2022): Abstract Dynamic Programming, Athena Scientific.
Bertsekas, D. P. and J. N. Tsitsiklis (1995): “Neuro-dynamic Programming: an

Overview,” in Proceedings of 1995 34th IEEE Conference on Decision and Control,
IEEE, vol. 1, 560–564.

Calvano, E., G. Calzolari, V. Denicolo, and S. Pastorello (2020): “Artifi-
cial Intelligence, Algorithmic Pricing, and Collusion,” American Economic Review,
110, 3267–3297.

Campbell, J. Y. and J. Ammer (1993): “What Moves the Stock and Bond Mar-
kets? A Variance Decomposition for Long-term Asset Returns,” The Journal of
Finance, 48, 3–37.

Charpentier, A., R. Elie, and C. Remlinger (2021): “Reinforcement Learning
in Economics and Finance,” Computational Economics, 1–38.

Cochrane, J. (2009): Asset Pricing: Revised Edition, Princeton University Press.
Cochrane, J. H. (2011): “Presidential Address: Discount Rates,” The Journal of

Finance, 66, 1047–1108.
Du, Y. (1990): “Fixed Points of Increasing Operators in Ordered Banach Spaces and

Applications,” Applicable Analysis, 38, 1–20.
Durdu, C. B., E. G. Mendoza, and M. E. Terrones (2009): “Precautionary

Demand for Foreign Assets in Sudden Stop Economies: An Assessment of the New
Mercantilism,” Journal of Development Economics, 89, 194–209.

Hansen, L. P. and E. Renault (2010): “Pricing Kernels,” Encyclopedia of Quan-
titative Finance.

36

Hasselt, H. (2010): “Double Q-learning,” Advances in Neural Information Process-
ing Systems, 23.

Hills, T. S. and T. Nakata (2018): “Fiscal Multipliers at the Zero Lower Bound:
the Role of Policy Inertia,” Journal of Money, Credit and Banking, 50, 155–172.

Hills, T. S., T. Nakata, and S. Schmidt (2019): “Effective Lower Bound Risk,”
European Economic Review, 120, 103321.

Hubmer, J., P. Krusell, and A. A. Smith Jr (2021): “Sources of US Wealth
Inequality: Past, Present, and Future,” NBER Macroeconomics Annual, 35, 391–
455.

Jaakkola, T., M. Jordan, and S. Singh (1993): “Convergence of Stochastic It-
erative Dynamic Programming Algorithms,” Advances in Neural Information Pro-
cessing Systems, 6.

Jasso-Fuentes, H., R. R. López-Martínez, and J. A. Minjárez-Sosa (2022):
“Some Advances on Constrained Markov Decision Processes in Borel Spaces with
Random State-dependent Discount Factors,” Optimization, 1–27.

Lucas Jr, R. E. (1978): “Asset Prices in an Exchange Economy,” Econometrica:
Journal of the Econometric Society, 1429–1445.

Melo, F. S. (2001): “Convergence of Q-learning: A Simple Proof,” Institute Of
Systems and Robotics, Tech. Rep, 1–4.

Mendoza, E. G. (1991): “Real Business Cycles in a Small Open Economy,” The
American Economic Review, 797–818.

Minjárez-Sosa, J. A. (2015): “Markov Control Models with Unknown Random
State-Action-Dependent Discount Factors,” Top, 23, 743–772.

Nakata, T. (2016): “Optimal Fiscal and Monetary Policy with Occasionally Binding
Zero Bound Constraints,” Journal of Economic Dynamics and Control, 73, 220–
240.

Neuneier, R. (1997): “Enhancing Q-learning for Optimal Asset Allocation,” Ad-
vances in Neural Information Processing Systems, 10.

Obstfeld, M. (1990): “Intertemporal Dependence, Impatience, and Dynamics,”
Journal of Monetary Economics, 26, 45–75.

Park, D. and D. Ryu (2022): “Supply Chain Ethics and Transparency: An Agent-
Based Model Approach with Q-learning Agents,” Managerial and Decision Eco-
nomics, 43, 3331–3337.

Rosenberg, J. V. and R. F. Engle (2002): “Empirical Pricing Kernels,” Journal
of Financial Economics, 64, 341–372.

37

Sargent, T. J. and J. Stachurski (2023): “Dynamic Programming Volume 1,”
QuantEcon, Available at https://dp.quantecon.org/ or https://github.com/
QuantEcon/book-dp1.

Schmitt-Grohé, S. and M. Uribe (2003): “Closing Small Open Economy Mod-
els,” Journal of International Economics, 61, 163–185.

Sharma, A., R. Gupta, K. Lakshmanan, and A. Gupta (2021): “Transition
Based Discount Factor for Model Free Algorithms in Reinforcement Learning,”
Symmetry, 13, 1197.

Singh, S., T. Jaakkola, M. L. Littman, and C. Szepesvári (2000): “Conver-
gence Results for Single-step On-policy Reinforcement-learning Algorithms,” Ma-
chine learning, 38, 287–308.

Stachurski, J. and J. Zhang (2021): “Dynamic Programming with State-
dependent Discounting,” Journal of Economic Theory, 192, 105190.

Toda, A. A. (2021): “Perov’s Contraction Principle and Dynamic Programming
with Stochastic Discounting,” Operations Research Letters, 49, 815–819.

——— (2023): “Unbounded Markov Dynamic Programming with Weighted Supre-
mum Norm Perov Contractions,” ArXiv Preprint ArXiv:2310.04593.

Tsitsiklis, J. N. (1994): “Asynchronous Stochastic Approximation and Q-learning,”
Machine learning, 16, 185–202.

Vasilev, A. (2022): “A Real-Business-Cycle Model with Endogenous Discounting
and a Government Sector,” Notas Económicas, 73–86.

Waltman, L. and U. Kaymak (2008): “Q-learning Agents in a Cournot Oligopoly
Model,” Journal of Economic Dynamics and Control, 32, 3275–3293.

Watkins, C. J. and P. Dayan (1992): “Q-learning,” Machine learning, 8, 279–292.
Watkins, C. J. C. H. (1989): “Learning From Delayed Rewards,” Ph.D. thesis,

King’s College, Cambridge United Kingdom.
Wei, Q. and X. Guo (2011): “Markov Decision Processes with State-dependent

Discount Factors and Unbounded Rewards/Costs,” Operations Research Letters,
39, 369–374.

Wu, X. and J. Zhang (2016): “Finite Approximation of the first Passage Models for
Discrete-time Markov Decision Processes with Varying Discount Factors,” Discrete
Event Dynamic Systems, 26, 669–683.

Wu, X., X. Zou, and X. Guo (2015): “First Passage Markov Decision Pro-
cesses with Constraints and Varying Discount Factors,” Frontiers of Mathematics
in China, 10, 1005–1023.

https://dp.quantecon.org/
https://github.com/QuantEcon/book-dp1
https://github.com/QuantEcon/book-dp1

38

Yoshida, N., E. Uchibe, and K. Doya (2013): “Reinforcement Learning with
State-dependent Discount Factor,” in 2013 IEEE Third Joint International Con-
ference on Development and Learning and Epigenetic Robotics (ICDL), IEEE, 1–6.

Zhang, Z. (2013): Variational, Topological, and Partial Order Methods with Their
Applications, vol. 29 of Developments in Mathematics, Springer Berlin Heidelberg.

	1. Introduction
	2. Q-learning, SARSA, and Double Q-learning
	2.1. Background
	2.2. Eventual Discounting
	2.3. Q-learning
	2.4. SARSA
	2.5. Double Q-learning

	3. Main Results
	3.1. Assumptions and Convergences

	4. Proofs for Main Results
	4.1. Preliminaries
	4.2. Proofs of Proposition 3.1
	4.3. Remainging Proofs in Section 3.1

	5. Stability of Q-learning
	6. Learning with Concavity
	6.1. Stochastic Approximation with Concavity
	6.2. Q-learning with Concavity

	Appendix A. Appendix
	References

