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Motivation

• How to analyze the dynamic choices of agents with data?
• Zurcher is a bus manager,
• observes mileage xt ,
• chooses between ordinary maintenance (dt = 0) and overhaul/engine

replacement (dt = 1),
• minimizes infinite-horizon discounted costs

C (x) := min
{dt}t≥0

E

[ ∞∑
t=0

βtct

∣∣∣x0 = x

]
(x ∈ X)

ct := c(xt , dt) + et : cost of engine maintenance or replacement, with
unobserved shocks et
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Motivation

• Observe {(xt , dt)}t≥0, how to predict Zurcher’s behavior?

• What are costs? How to take expectations?
• parameterize: c(x , d , θ),P(x ′|x , d , θ)
• How to estimate the primitives from data?

• Rust (1987) proposes nested fixed point algorithms
• given parameters, solve DP
• obtain closed forms of choice probability functions
• maximize likelihood function, with observed choice
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The Importance of Rust (1987)



5/23

Assumptions in Rust (1987)

• Zurcher’s decisions coincide with a solution of DP

• Zurcher has perfect information on cost and state transition

• e.g., transition matrix for mileage

Π(d=0) =


p1 p2 p3 0 · · · 0
0 p1 p2 p3 · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · 0 p1 1− p1

0 · · · · · · · · · 0 1


• Extreme value Type 1 distribution of shocks

• logit structure of optimal choice probability
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Zurcher as a DP solver

Bellman equation in Rust (1987):

C (x , e; θ) = min
d∈{0,1}

c(x , d) + e + βE[C (x ′, e′; θ)|(x , e, d)]

where e ∼ Gumbel(0, 1) and

c(x , d) :=

RC + cm(0; θ), d = 1

cm(x ; θ), d = 0

e.g., cm(x ; θ) = θ1x
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DP Estimation on GPU with JAX

1. Fix β = 0.9999.

2. Estimates transition kernel of mileage by MLE.

3. Estimates cost functions by NFXP algorithm.

Parameter Interpretation Estimate Std

p1 Pr(xt+1 = xt) 0.3919 0.0096
p2 Pr(xt+1 = xt + 1) 0.5953 0.0118
p3 Pr(xt+1 = xt + 2) 0.0129 0.0017
θ1 cm(x) = θ1x 0.0023 0.0006
RC Replacement Cost 10.0562 1.3576
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Limitations of DP approach

Many assumptions.

• Zurcher can solve the Bellman equation.

• Zurcher’s behavior follows the solution to DP.

• Zurcher has complete knowledge of the environment.

• Data is detached from solving the model, data is only useful for
econometricians.

Why not let reality/data speak for itself?
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Introduction of This Project

Implement structural estimation using Q-learning.

Q-learning (Watkins and Dayan, 1992).

• Model-free:
do not require prior knowledge about an environment

• Applications in economics and finance
Cournot model (Waltman and Kaymak, 2008),
financial trading (Lee et al., 2007; Jeong and Kim, 2019; Chakole
et al., 2021),
pricing (Tesauro, 2001)
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Zurcher as a Q-learner

Shocks et are unobservable to agents/econometricians: observe ct .

Instead of learning

C (x) = min
d∈{0,1}

E[c(x , d) + e + βC (x ′)|(x , d)]︸ ︷︷ ︸
Q(x,d)

we learn

Q(x , d) = E

[
c(x , d) + e + min

a∈{0,1}
Q(x ′, a)

∣∣∣(x , d)]
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Zurcher as a Q-learner

• For each time t, Zurcher learns mileage xt and takes
maintenance/replacement decision dt according to his experience Qt

• Zurcher then observes cost ct and next period mileage xt+1.

• Zurcher updates his experience Qt+1(xt , dt) with learning rate αt by
ct + βmina Qt(xt+1, a)
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Zurcher as a Q-learner

Qt+1(xt , dt) = (1 − αt)Qt(xt , dt) + αt

[
ct + β min

a∈{0,1}
Qt(xt+1, a)

]
︸ ︷︷ ︸

Yt

where αt(x , a) ∈ [0, 1] is the learning rate, setting αt(x , d) = 0 if
(x , d) ̸= (xt , dt).

Qt is a sample mean:

Q(x , d) = E

[
c(x , d) + e + min

a∈{0,1}
Q(x ′, a)

∣∣∣(x , d)]
≈ 1

T

T∑
t=1

Yt =
1
T

T−1∑
t=1

Yt +
1
T
YT (T →∞)

= (1− 1
T
)ȲT−1 +

1
T
YT
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Q-learning: Convergence

Assumption 0.1 (Robbins-Monro)

1.
∑

t αt(x , d) = ∞ and
∑

t α
2
t (x , a) < ∞ for all (x , a) ∈ G w.p.1

2. E(e|(x , d)) = µe(x , d) and Var(et |Ft) < ∞

Lemma 0.1 (Watkins and Dayan (1992); Tsitsiklis (1994))
If Assumption 0.1 holds, then {Qt}t≥0 converges to Q w.p.1.
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Zurcher as a Q-learner

Zurcher knows that

• If he updates his experience following Q-learning, he will learn the
optimal strategy eventually.

• Allows himself to make mistakes to learn optimal strategy.

• Does not need to know perfect information about environments.

• Can also learn cost function and probability transition kernel if he
observes {ct}t≥0.

Unfortunately, econometricians do not observe {ct}t≥0, and do not have
large enough data.

Fortunately, econometricians observe {dt}t≥0 and can estimate c(x , d ; θ).
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Q-learning Algorithm

Algorithm 1: Q-learning

Initialize Q ∈ RG , x ∈ X
repeat

Take action d , based on Q(x , ·) using ϵ-greedy policy
Observe x ′ ∈ X and c ∈ R
Q(x , d)← (1− α(x , d))Q(x , d) + α(x , d)

(
c + βmina∈{0,1} Q(x ′, a)

)
x ← x ′

end

• (xt , dt , xt+1) are observed from data.

• ct = c(xt , dt ; θ) + et and et are simulated.

• ϵ-greedy policy: 1 − ϵ probability that dt = argmina Qt(xt , a) and ϵ

probability that dt is randomly chosen.
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Q-learning Algorithm

• Since P(x ′|x , d = 1) = P(x ′|0, d = 0), we have Q(x , 1) = RC + Q(0, 0).

Algorithm 2: Q-learning with q

Initialize Q ∈ RG and set q(x) = Q(x , 0) for all x ∈ X = {0,m1, . . . ,mn}
Initialize x ∈ X
repeat

d ← 1{RC + q(0) > q(x)} or randomly choose d with ϵ-greedy policy
Observe x ′ ∈ X and c ∈ R
if d = 0 then

q(x)← (1− α)q(x) + α[c + βmin{q(x ′),RC + q(0)}]
else

q(0)← (1− α)q(0) + α[c + βmin{q(x ′),RC + q(0)} − RC ]

x ← x ′

end
Q(x , d)← 1{d=1}(RC + q(0)) + 1{d=0}q(x) ((x , d) ∈ G)



17/23

Estimation on GPU with JAX

1. Set β = 0.9999, α = 0.1, ϵ = 0.02.

2. Parameterize Q0 as a quadratic function of (x , a).

3. Simulate cost shock sequences, {(xt , ct , xt+1}t≥0.

4. Simulate the time series of Q-table and choice probability.

5. Simulated maximum likelihood estimation.

Parameter Interpretation Estimate Std

δ0 Q0(x , 0) = δ0 + δ1x + δ2x
2 0.0010 0.0002

δ1 Q0(x , 0) = δ0 + δ1x + δ2x
2 0.0021 0.0004

δ2 Q0(x , 0) = δ0 + δ1x + δ2x
2 0.0004 0.00007

θ1 cm(x) = θ1x 0.0011 0.0002
RC Replacement Cost 7.2174 1.3391
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Fitness of Data: DP approach
• DP: stable decision pattern.
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Fitness of Data: Q-learning

• Q-learning: Zurcher learns from data.
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Demand For Engine Replacement: DP approach
• DP: stable engine demand acoss time, d = f (x ,RC ).
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Demand For Engine Replacement: Q-learning
• Q-learning: engine demand curve shifts through time, d = f (x ,RC , t).
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“The majority of the modern economics literature can be
regarded as a type of applied DP, ..., However, my impression
is that formal DP has not been widely adopted to improve
decision making by individuals and firms.”

— Rust (2019)
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Conclusion

Q-learning is a promising complement to DP

• more realistic assumptions for rationality.

• evolving decision rules over time.

• more flexible in modeling complex decisions.

• GPU makes simulation-based estimation fast.

Future works

• Applications in other economic problems.

• Q-learning with function approximation.

• Show that Q-learning has better performance.
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Thank you! We can go home now!
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