

Wending Liu Chien-Hsiang Yeh Shu Hu

Research School of Economics Australian National University

Motivation

- How to analyze the dynamic choices of agents with data?
 - Zurcher is a bus manager,
 - observes mileage x_t ,
 - chooses between ordinary maintenance (d_t = 0) and overhaul/engine replacement (d_t = 1),
 - minimizes infinite-horizon discounted costs

$$C(x) := \min_{\{d_t\}_{t \ge 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t c_t \middle| x_0 = x\right] \qquad (x \in X)$$

 $c_t \coloneqq c(x_t, d_t) + e_t$: cost of engine maintenance or replacement, with unobserved shocks e_t

Motivation

- Observe $\{(x_t, d_t)\}_{t \ge 0}$, how to predict Zurcher's behavior?
- What are costs? How to take expectations?
 - parameterize: $c(x, d, \theta), P(x'|x, d, \theta)$
 - How to estimate the primitives from data?
- Rust (1987) proposes nested fixed point algorithms
 - given parameters, solve DP
 - obtain closed forms of choice probability functions
 - maximize likelihood function, with observed choice

The Importance of Rust (1987)

Assumptions in Rust (1987)

- Zurcher's decisions coincide with a solution of DP
- Zurcher has perfect information on cost and state transition
- e.g., transition matrix for mileage

$$\Pi_{(d=0)} = egin{pmatrix} p_1 & p_2 & p_3 & 0 & \cdots & 0 \\ 0 & p_1 & p_2 & p_3 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & 0 & p_1 & 1 - p_1 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

- Extreme value Type 1 distribution of shocks
 - logit structure of optimal choice probability

Zurcher as a DP solver

Bellman equation in Rust (1987):

$$C(x, e; \theta) = \min_{d \in \{0, 1\}} c(x, d) + e + \beta \mathbb{E}[C(x', e'; \theta) | (x, e, d)]$$

where $e \sim Gumbel(0,1)$ and

$$c(x,d) := \begin{cases} RC + c_m(0;\theta), & d = 1 \\ c_m(x;\theta), & d = 0 \end{cases}$$

e.g.,
$$c_m(x;\theta) = \theta_1 x$$

DP Estimation on GPU with JAX

- 1. Fix $\beta = 0.9999$.
- 2. Estimates transition kernel of mileage by MLE.
- 3. Estimates cost functions by NFXP algorithm.

Parameter	Interpretation	Estimate	Std
p_1	$Pr(x_{t+1} = x_t)$	0.3919	0.0096
p_2	$Pr(x_{t+1} = x_t + 1)$	0.5953	0.0118
p_3	$Pr(x_{t+1}=x_t+2)$	0.0129	0.0017
$ heta_1$	$c_m(x) = \theta_1 x$	0.0023	0.0006
RC	Replacement Cost	10.0562	1.3576

Limitations of DP approach

Many assumptions.

- Zurcher can solve the Bellman equation.
- Zurcher's behavior follows the solution to DP.
- Zurcher has complete knowledge of the environment.
- Data is detached from solving the model, data is only useful for econometricians.

Why not let reality/data speak for itself?

Introduction of This Project

Implement structural estimation using Q-learning.

Q-learning (Watkins and Dayan, 1992).

 Model-free: do not require prior knowledge about an environment

Applications in economics and finance
 Cournot model (Waltman and Kaymak, 2008),
 financial trading (Lee et al., 2007; Jeong and Kim, 2019; Chakole
 et al., 2021),
 pricing (Tesauro, 2001)

Shocks e_t are unobservable to agents/econometricians: observe c_t .

Instead of learning

$$C(x) = \min_{d \in \{0,1\}} \underbrace{\mathbb{E}[c(x,d) + e + \beta C(x')|(x,d)]}_{Q(x,d)}$$

we learn

$$Q(x,d) = \mathbb{E}\left[c(x,d) + e + \min_{a \in \{0,1\}} Q(x',a) | (x,d)\right]$$

- For each time t, Zurcher learns mileage x_t and takes maintenance/replacement decision d_t according to his experience Q_t
- Zurcher then observes cost c_t and next period mileage x_{t+1} .
- Zurcher updates his experience $Q_{t+1}(x_t, d_t)$ with learning rate α_t by $c_t + \beta \min_a Q_t(x_{t+1}, a)$

$$Q_{t+1}(x_t, d_t) = (1 - \alpha_t)Q_t(x_t, d_t) + \alpha_t \underbrace{\left[c_t + \beta \min_{a \in \{0, 1\}} Q_t(x_{t+1}, a)\right]}_{Y_t}$$

where $\alpha_t(x, a) \in [0, 1]$ is the learning rate, setting $\alpha_t(x, d) = 0$ if $(x, d) \neq (x_t, d_t)$.

 Q_t is a sample mean:

$$Q(x,d) = \mathbb{E}\left[c(x,d) + e + \min_{a \in \{0,1\}} Q(x',a) \middle| (x,d)\right]$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} Y_t = \frac{1}{T} \sum_{t=1}^{T-1} Y_t + \frac{1}{T} Y_T \qquad (T \to \infty)$$

$$= (1 - \frac{1}{T}) \bar{Y}_{T-1} + \frac{1}{T} Y_T$$

Q-learning: Convergence

Assumption 0.1 (Robbins-Monro)

1.
$$\sum_t \alpha_t(x,d) = \infty$$
 and $\sum_t \alpha_t^2(x,a) < \infty$ for all $(x,a) \in \mathsf{G}$ w.p.1

2.
$$\mathbb{E}(e|(x,d)) = \mu_e(x,d)$$
 and $\mathsf{Var}(e_t|\mathscr{F}_t) < \infty$

Lemma 0.1 (Watkins and Dayan (1992); Tsitsiklis (1994)) If Assumption 0.1 holds, then $\{Q_t\}_{t>0}$ converges to Q w.p.1.

Zurcher knows that

- If he updates his experience following Q-learning, he will learn the optimal strategy eventually.
- Allows himself to make mistakes to learn optimal strategy.
- Does not need to know perfect information about environments.
- Can also learn cost function and probability transition kernel if he observes {c_t}_{t≥0}.

Unfortunately, econometricians do not observe $\{c_t\}_{t\geq 0}$, and do not have large enough data.

Fortunately, econometricians observe $\{d_t\}_{t>0}$ and can estimate $c(x, d; \theta)$.

Q-learning Algorithm

Algorithm 1: Q-learning

Initialize
$$Q \in \mathbb{R}^G, x \in X$$

repeat

```
Take action d, based on Q(x,\cdot) using \epsilon-greedy policy Observe x' \in X and c \in \mathbb{R} Q(x,d) \leftarrow (1-\alpha(x,d))Q(x,d) + \alpha(x,d)\left(c+\beta\min_{a\in\{0,1\}}Q(x',a)\right) x \leftarrow x'
```

end

- (x_t, d_t, x_{t+1}) are observed from data.
- $c_t = c(x_t, d_t; \theta) + e_t$ and e_t are simulated.
- ϵ -greedy policy: 1ϵ probability that $d_t = \arg\min_a Q_t(x_t, a)$ and ϵ probability that d_t is randomly chosen.

Q-learning Algorithm

• Since P(x'|x, d = 1) = P(x'|0, d = 0), we have Q(x, 1) = RC + Q(0, 0).

Algorithm 2: Q-learning with q

Initialize
$$Q \in \mathbb{R}^G$$
 and set $q(x) = Q(x, 0)$ for all $x \in X = \{0, m_1, \dots, m_n\}$
Initialize $x \in X$

repeat

$$\begin{aligned} & d \leftarrow \mathbb{I}\{RC + q(0) > q(x)\} \text{ or randomly choose } d \text{ with } \epsilon\text{-greedy policy} \\ & \text{Observe } x' \in \mathsf{X} \text{ and } c \in \mathbb{R} \\ & \text{if } d = 0 \text{ then} \\ & & | q(x) \leftarrow (1-\alpha)q(x) + \alpha[c+\beta \min\{q(x'), RC + q(0)\}] \\ & \text{else} \\ & & | q(0) \leftarrow (1-\alpha)q(0) + \alpha[c+\beta \min\{q(x'), RC + q(0)\} - RC] \\ & x \leftarrow x' \end{aligned}$$

end

$$Q(x,d) \leftarrow \mathbb{1}_{\{d=1\}}(RC+q(0)) + \mathbb{1}_{\{d=0\}}q(x)$$
 $((x,d) \in G)$

Estimation on GPU with JAX

- 1. Set $\beta = 0.9999$, $\alpha = 0.1$, $\epsilon = 0.02$.
- 2. Parameterize Q_0 as a quadratic function of (x, a).
- 3. Simulate cost shock sequences, $\{(x_t, c_t, x_{t+1})_{t\geq 0}$.
- 4. Simulate the time series of Q-table and choice probability.
- 5. Simulated maximum likelihood estimation.

Parameter	Interpretation	Estimate	Std
δ_0	$Q_0(x,0) = \delta_0 + \delta_1 x + \delta_2 x^2$	0.0010	0.0002
$\delta_{ extbf{1}}$	$Q_0(x,0) = \delta_0 + \delta_1 x + \delta_2 x^2$	0.0021	0.0004
δ_2	$Q_0(x,0) = \delta_0 + \delta_1 x + \delta_2 x^2$	0.0004	0.00007
$ heta_{ extbf{1}}$	$c_m(x) = \theta_1 x$	0.0011	0.0002
RC	Replacement Cost	7.2174	1.3391

Fitness of Data: DP approach

• DP: stable decision pattern.

Fitness of Data: Q-learning

• Q-learning: Zurcher learns from data.

Demand For Engine Replacement: DP approach

• DP: stable engine demand acoss time, d = f(x, RC).

Demand For Engine Replacement: Q-learning

• Q-learning: engine demand curve shifts through time, d = f(x, RC, t).

Engine Demand during 1000 time periods (Q-learning)

"The majority of the modern economics literature can be regarded as a type of applied DP, ..., However, my impression is that formal DP has not been widely adopted to improve decision making by individuals and firms."

- Rust (2019)

Conclusion

Q-learning is a promising complement to DP

- more realistic assumptions for rationality.
- evolving decision rules over time.
- more flexible in modeling complex decisions.
- GPU makes simulation-based estimation fast.

Future works

- Applications in other economic problems.
- Q-learning with function approximation.
- Show that Q-learning has better performance.

Thank you! We can go home now!

References I

- Chakole, J. B., M. S. Kolhe, G. D. Mahapurush, A. Yadav, and M. P. Kurhekar (2021): "A Q-learning agent for automated trading in equity stock markets," *Expert Systems with Applications*, 163, 113761.
- Jeong, G. and H. Y. Kim (2019): "Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning," Expert Systems with Applications, 117, 125–138.
- Lee, J. W., J. Park, O. Jangmin, J. Lee, and E. Hong (2007): "A multiagent approach to q-learning for daily stock trading," *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, 37, 864–877.
- Rust, J. (1987): "Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher," Econometrica: Journal of the Econometric Society, 999–1033.
- ——— (2019): "Has dynamic programming improved decision making?" Annual Review of Economics, 11, 833–858.
- Tesauro, G. (2001): "Pricing in agent economies using neural networks and multi-agent Q-learning," Sequence Learning: Paradigms, Algorithms, and Applications, 288–307.
- Tsitsiklis, J. N. (1994): "Asynchronous stochastic approximation and Q-learning," Machine learning, 16, 185–202.
- Waltman, L. and U. Kaymak (2008): "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, 32, 3275–3293.
- Watkins, C. J. and P. Dayan (1992): "Q-learning," Machine learning, 8, 279-292.