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Abstract. In this paper, we extend the discrete-time dynamic programming to
the case of state-action-dependent discounting. We establish a sufficient condition
known as "eventual discounting" to guarantee the standard optimality results. The
condition becomes necessary for the existence of policy value given a compact state
space and concave functions. Our research encompasses dynamic programming
with both bounded and unbounded rewards. Furthermore, we extend the scope of
eventual discounting to applications involving risk-sensitive preferences.
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1. Introduction

Dynamic programming or Markov decision processes (MDPs) is a robust framework
for modeling and solving sequential decision-making problems. The conventional ap-
proach in dynamic programming assumes constant discount factors to capture the
trade-off between present and future rewards. However, in economics and finance,
discount rates vary over time (Cochrane, 2011, Hills and Nakata, 2018). The con-
stant discounting falls short in explaining the intricacies of real-world decision-making
where agents have subjective time preferences or experience exogenous uncertainty
in discount rates. For example, regarding shock-dependent discounts, Justiniano and
Primiceri (2008) illustrate that the variance in discount factors accounts for a signif-
icant portion of consumption volatility. Albuquerque et al. (2016) shows that risk
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in time preference accounts for key asset pricing moments, such as equity premium,
bond term premium, and weak correlation between stock returns and fundamentals.

Besides the uncertainty in exogenous state-dependent discounts, endogenous time
preferences cannot be overlooked in economics. For instance, Choi et al. (2008)
demonstrate that endogenously generated short-run international differences in sub-
jective discounting, indicating increasing relative U.S. impatience, result in saving
and current account imbalances that align with observed data patterns. Hashimzade
et al. (2023) shows that a self-reinforcing redistribution mechanism, through which
the endogenous discounting can lead to a higher equilibrium interest rate and a more
unequal wealth distribution, in comparison to the benchmark model with a constant
discount rate. Maeda and Nagaya (2023) show that the accelerated short-sighted
consumption habit leads to earlier depletion of exhaustible resources.

This paper extends the dynamic programming theory to account for state-action-
dependent discounting. We establish a comprehensive dynamic programming theory
by introducing the concept of eventual discounting, where the expected multiplicative
discount factors are eventually less than one for any policies. We demonstrate that
eventual discounting implies the eventually contraction of Bellman operator, which
is then contracting in some weighted supremum norm. Under these conditions of
eventual discounting, we demonstrate the existence of an optimal policy, validate
Bellman’s principle of optimality, and confirm that value function iteration, Howard
policy iteration, and optimistic iteration converge to the desired value function or
optimal policy.

In the existing literature, Stachurski and Zhang (2021) provides a complete the-
ory of dynamic programming with state-dependent discounting, while Sargent and
Stachurski (2023) presents a theory of dynamic programming of state-action-dependent
discounting in finite state and action spaces. Moreover, Toda (2021) and Toda (2023)
use the Perov Contraction Theorem to prove that the Bellman operator is contracting
in some weighted supremum norm and has a unique fixed point when the exogenous
state space is finite and discount factors are state-dependent.1

Addressing the gap in the literature concerning action-dependent time preferences,
our exploration considers general state and action spaces with state-action-dependent

1The weighted function is an upper bound for the reward.
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discounting. In particular, we provides the standard optimality results for the dy-
namic programming with action-dependent discounting as outlined in Uzawa (1968)
and Becker and Mulligan (1997), combining it with state-dependent stochastic dis-
counting.

The study begins by examining the dynamic programming framework concerning
bounded rewards. We show that the eventual discounting is sufficient for the existence
and uniqueness of fixed points for both the Bellman operator and the policy value
operators. We demonstrate that the eventually discounting condition renders these
operators both eventually contracting in the supremum norm and contracting in some
weighted supremum norm. This finding provides a robust foundation for the analysis
of the convergence rates of these operators over time.

Furthermore, we explore the necessity of eventual discounting for the Markov decision
process when state space is compact and functions are concave. We show that the
condition of eventual discounting is necessary for ensuring the existence and unique-
ness of policy values or the fixed points to the policy operators. In this context, we
observe that the spectral radii of operators for discounted conditional expectation
primarily influence the convergence rate of the system. Notably, the eigenfunctions
corresponding to these spectral radii are employed as weighting vectors in weighted
supremum norms.

In the extension, we generalize the result to the dynamic programming with un-
bounded rewards via the Q-transform, following Ma et al. (2022). We show that
the standard optimality of dynamic programming holds when the discount factors
are state-action-dependent and eventually discounting. The computation method is
provided. We prove that value function iteration and action-value function iteration
of the expected action-value operator converge to the optimal value or action value,
which extends Ma et al. (2022). We also study risk-sensitive preference with eventual
discounting, which ensures the uniqueness of optimal value function and the existence
of optimal policy.

Related literature. The related literature in the Markov decision process with state-
or action-dependent discount factors includes Wei and Guo (2011), Minjárez-Sosa
(2015), Wu et al. (2015), Wu and Zhang (2016) and Jasso-Fuentes et al. (2022).

About endogenous time preferences, Uzawa (1968) and Epstein and Hynes (1983)
propose a theory in which impatience rises with consumption, suggesting that the
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rich are more likely to heavily discount future consumption. Although Uzawa time
preference may be counterintuitive and not be supported by empirical evidence, it
succeeds in theories of small open economics such as solving non-stationary issues
(Schmitt-Grohé and Uribe, 2003, Guest and McDonald, 2001, Dutta and Yang, 2013).
Helpman and Razin (1982) point out that when the rate of time preference remains
lower than the interest rate, individuals rationally choose to accumulate foreign as-
sets to finance their increasing consumption. The constant-discount representation of
preferences cannot effectively capture this dynamic behavior. Consequently, studies
on small open economies commonly employ Uzawa-type endogenous discount fac-
tors (Obstfeld, 1990, Mendoza, 1991, Schmitt-Grohé and Uribe, 2003, Durdu et al.,
2009, Bodenstein, 2011, 2013, Vasilev, 2022b). For instance, Vasilev (2022a) consid-
ers Uzawa time preference, where the higher level of real income today leads to a
lower discount rate, to explain the propagation of cyclical fluctuations in Bulgaria.
Durdu et al. (2009) uses Uzawa endogenous time preference to model the financial
globalization and the risk of Sudden Stop problem.

In contrast to Uzawa time preferences, Becker and Mulligan (1997) propose a frame-
work that time patience is marginally increasing in future-oriented capital. Dutta
and Yang (2013) establish endogenous discount factors such that marginal impa-
tience is increasing in consumption (Uzawa type) and decreasing in future-oriented
capital (Becker-Mulligan type). Their model is consistent with the empirical evidence
from Australia that current consumption and turnover in future-oriented capital are
positively correlated.

In empirical studies on time preferences and wealth, Lawrance (1991) reveals that the
affluent exhibit greater patience than the less affluent from estimating the consump-
tion Euler equations and the data in Panel Study of Income Dynamics. Huffman
et al. (2019) examine heterogeneity in time preferences among elderly Americans and
suggest that impatience correlates with lower wealth. Samwick (1998) indicates that
time patience tends to increase with both income and age, by estimating the distri-
bution of discount rates from the wealth data in Survey of Consumer Finances 1992.
Cohen et al. (2020) provides a survey of the related literature.

A survey of dynamic programming with state-dependent discount rates can be found
in Stachurski and Zhang (2021). In asset pricing and state-dependent discounts,
since variation in asset returns is significantly due to variation in discount factors,
asset pricing models consider stochastic discount factors depending on the state of
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consumption growth to include adjustments for risk (Lucas Jr, 1978, Rosenberg and
Engle, 2002, Cochrane, 2009, Hansen and Renault, 2010). (Campbell and Ammer,
1993, Cochrane, 2011) point out that variation in asset returns is predominantly due
to variation in discount factors.

In literature of risk-sensitive preference, Hansen and Sargent (1995) develop a recur-
sive dynamics of discounted costs for a linear quadratic exponential Gaussian linear
control model, introducing risk adjustment into the framework. Moreover, Bäuerle
and Jaśkiewicz (2018) studies a one-sector optimal growth model with unbounded
shocks and rewards, in the framework of Hansen and Sargent (1995). They demon-
strates the optimality equation for the non-expected utility and establish the Euler
equation. Their analysis is based on an inequality involving associated random vari-
ables, a concept that is also utilized in the present paper. Weil (1993) develop a
stochastic optimal consumption model with constant absolute risk aversion to study
precautionary savings and the permanent income hypothesis. Backus et al. (2015)
investigate a business cycle model incorporating aggregate risk and ambiguity. They
observe that heightened uncertainty typically leads to a reduction in consumption.

If state and action spaces are finite, optimality and comparative statics can be es-
tablished using fixed-point theory in complete lattices. Relevant techniques and in-
sights can be found in works by Zhou (1994), Olszewski (2021), Balbus et al. (2022),
Stachurski et al. (2022b), and Sargent and Stachurski (2023). Additionally, literature
on the uniqueness of fixed-point problems for recursive preferences and dynamics in-
cludes Marinacci and Montrucchio (2010), Borovička and Stachurski (2020), Bloise
et al. (2024), Ren and Stachurski (2021), and Christensen (2022).

The paper is structured as follows. Section 2 sets up the recursive decision process
and presents its optimality results under eventual discounting. Section 3 presents the
optimality of an eventually discounting Markov decision process. Section 4 studies
the necessity of eventual discounting. Section 5 gives applications. Section 6 extends
to unbounded rewards. Section 7 treats extensions in risk-sensitive preference.

2. Recursive Decision Process with Eventual Discounting

In this section, we introduce the framework of the recursive decision process and
dynamic programming with state-action-dependent discounting. We also show the
optimality results and the convergences of the conventional computation methods
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under eventual discounting. The application of recursive decision processes in Markov
decision processes is presented in the next section.

2.1. Preliminary. Let X be a metric space. Denote the family of Borel measurable
(and bounded) real-valued functions on X as mX (mbX). Denote the family of real-
valued continuous (resp. upper semicontinuous) and bounded functions on X as cbX
(resp. ubX). Define B(X) as the Borel σ-algebra on X. Given an everywhere positive
function w onX, let ∥·∥w be the weighted supremum norm ∥v∥w := supx∈X |v(x)|/w(x)
for all v ∈ mX and let ∥ · ∥ be the supremum norm. Let U be a metric space. A
self-map F on U is called globally stable if F has a unique fixed point u∗ ∈ U and
F ku→ u∗ for all u ∈ U . Also, F is called eventually contracting if there is k ∈ N such
that F k is contracting on U . Denote 1 ∈ mX as 1(x) ≡ 1 for x ∈ X. Throughout, ⩽
is the pointwise order on RX. Denote N0 := N ∪ {0}.

2.2. Recursive Decision Process. The fundamental idea of dynamic programming
is to solve sequential decision problems recursively through a generic Bellman equa-
tion

v(x) = sup
a∈Γ(x)

B(x, a, v) (x ∈ X and v ∈ mbX) (1)

where

(i) X is a Borel space, referred to as the state space,2

(ii) A is a Borel space, referred to as the action space,

(iii) Γ: X → A is a nonempty correspondence, referred to as the feasible corre-
spondence, such that Γ(x) is a measurable subset of A for all x ∈ X, which
defines

• the set of the feasible state-action pairs

G := {(x, a) ∈ X× A : a ∈ Γ(x)}, and

• the set of feasible stationary policies

Σ := {σ ∈ AX : σ is Borel-measurable and σ(x) ∈ Γ(x) for all x ∈ X},

(iv) a value aggregator B : G×mbX → R satisfies the monotonicity condition

v, w ∈ mbX and v ⩽ w =⇒ B(x, a, v) ⩽ B(x, a, w) for all (x, a) ∈ G. (2)
2A Borel space is a Borel subset of a complete and separable metric space.
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A recursive decision process (RDP) is a tuple R = (X,A,Γ, B). We interpretB(x, a, v)

as the lifetime rewards, contingent on current state x and action a, using v to eval-
uate future states. We assume the following regular conditions for the primitives of
an RDP throughout this section.

Condition 2.1.

(a) Γ is nonempty, continuous, and compact-valued, and

(b) (x, a) 7→ B(x, a, v) is bounded and measurable on G for all v ∈ mbX, and also
continuous whenever v ∈ cbX.

An RDP is called regular if it satisfies Condition 2.1. The regular conditions ensure
that the dynamic programming is well-defined. In detail, if an RDP is regular, then
the maximizer to Bellman equation (1) exists when the function v within the value
aggregator is continuous.3

Given σ ∈ Σ, a policy operator Tσ : mbX → mbX is defined by

Tσv(x) := B(x, σ(x), v) (x ∈ X and v ∈ mbX).

Then, Tσv(x) returns the lifetime value of action policy σ, under state evaluation
function v at state x.

The Bellman operator T : cbX → cbX is defined by

Tv(x) := sup
a∈Γ(x)

B(x, a, v) = sup
σ∈Σ

Tσv(x) (x ∈ X and v ∈ cbX),

which is the right-hand side of (1). Then, Tv(x) returns the optimized lifetime values,
under state evaluation function v at state x.

Given v ∈ mbX, a policy σ ∈ Σ is called v-greedy if

σ(x) ∈ argmax
a∈Γ(x)

B(x, a, v) for all x ∈ X.

A v-greedy policy optimizes lifetime rewards given state evaluation function v. By
the definition of greedy policies, σ is v-greedy if and only if Tv = Tσv.

The regular condition 2.1 guarantees the existence of a greedy policy for any v ∈
cbX, which is a fundamental requirement in dynamic programming. The following
lemma shows that whenever R is regular, Tσ and T are well-defined on mbX and cbX,
respectively, and v-greedy policies exist for all v ∈ cbX.

3In this paper, we call such assumptions for the existence of optimal solutions as regular conditions.
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Lemma 2.1. If R is regular, then the following statements are true.

(a) Tσ is a self-map on mbX for all σ ∈ Σ.

(b) T is a self-map in cbX.

(c) For all v ∈ cbX, there exists a v-greedy policy.

Lemma 2.1 implies that Tσ is a self-map for any σ ∈ Σ whenever R is regular. It
also implies that for any v ∈ cbX there exists a v-greedy policy. Moreover, since T is
a self-map on cbX, it ensures that the value function iteration algorithm, introduced
in Section 2.4, is well-behaved.

2.3. Eventual Discounting. In this section, we present the assumptions regarding
stochastic state-action-dependent discounting. Analogous to the standard contracting
Markov decision process that a constant discount factor is strictly less than one, we
adopt the concept of eventual discounting outlined in Stachurski and Zhang (2021),
Toda (2021) and Sargent and Stachurski (2023). Denote ρ(A) as the spectral radius
of a bounded linear operator A : mbX → mbX:

ρ(A) := lim
n→∞

∥An∥1/n

where ∥A∥ denotes the operator norm of A.4

Let R = (X,A,Γ, B). Assume that there is a k : G × X → R+ such that (x, a) 7→
k(x, a,B) is a Borel measurable function on G for all B ∈ B(X), and B 7→ k(x, a,B)

is a Borel measure on X for all (x, a) ∈ G. Suppose that the difference in value
aggregators is bounded as follows:

B(x, a, v)−B(x, a, w) ⩽
∫
X

(v(x′)− w(x′))k(x, a, dx′) (3)

for all (x, a) ∈ G and v, w ∈ mbX. Given σ ∈ Σ, let Lσ : mbX → mbX be a positive
linear operator defined by5

Lσh(x) :=

∫
X

h(x′)k(x, σ(x), dx′) (x ∈ X, h ∈ mbX). (4)

where we denote Lσh(x) := (Lσ(h))(x) to simplify notation. If the RDP is a Markov
decision process, then Lσh is interpreted as the expected discounted present value of

4∥A∥ := inf{c ⩾ 0: ∥Av∥ ⩽ c∥v∥ for all v ∈ mbX}.
5A linear operator operator L on mbX is positive if v ∈ mbX and v ⩾ 0 imply Lv ⩾ 0.
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h. We then have6

|Tσv(x)− Tσw(x)| ⩽ |B(x, σ(x), v)−B(x, σ(x), w)|

⩽
∫
X

|v(x′)− w(x′)|k(x, σ(x), dx′)

⩽ Lσ|v − w|(x) (x ∈ X, v, w ∈ mbX).

We say that Tσ is eventually discounting if (3) holds and ρ(Lσ) < 1. Define the
eventual-discount factor dσn under policy σ ∈ Σ by

dσn := sup
x∈X

Lnσ1(x) (n ∈ N),

We will show that ρ(Lσ) < 1 if and only if dσnσ
< 1 for some nσ ∈ N. The eventual-

discount factor generalizes the constant discount factor β < 1. Moreover, it can
be shown that ρ(Lσ) < 1 implies the global stability of Tσ. To ensure that T is
globally stable, we introduce the following conditions, where we consider both finite
and infinite feasible policies.7

Assumption 2.1.

(i) For any σ ∈ Σ, Tσ is eventually discounting, and

(ii) Σ is finite.

Assumption 2.2.

(a) (x, a) 7→
∫
X
h(x′)k(x, a, dx′) is continuous and bounded on G for any h ∈ cbX,

(b) for all (x, a) ∈ G and v, w ∈ mbX, (3) holds, and

(c) ρ(L̂) < 1, where L̂ : mbX → mbX is defined by

L̂h(x) := sup
σ∈Σ

Lσh(x). (x ∈ X, h ∈ mbX) (5)

If X and A are finite, Assumption 2.1 is sufficient for the optimality of dynamic
programming. Since Assumption 2.1 implies that each policy value vσ is bounded, we
can find the optimal policy from finitely many feasible policies.

If Σ is infinite, we consider Assumption 2.2 to ensure the global stability of T . The
assumption ρ(L̂) < 1 implies that the Bellman operator is eventually contracting so

6We denote Lσ|v − w|(x) = Lσ(|v − w|)(x) to simplify notation.
7We sincerely thank Prof. Gaetano Bloise for pointing out the concept of monotone sublinear

operators.
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that we can compute the optimal value function. Moreover, Bloise et al. (2024) shows
that ρ(L̂) < 1 is equivalent to that there exists an everywhere positive f ∈ mbX+

such that for some ρ ∈ (0, 1) we have L̂f ⩽ ρf .8 It implies that T is contractive in
∥ · ∥f .

Since it may be difficult to check the eventual discounting for each policy, confirming
the existence of nσ satisfying dσnσ

< 1, especially when there are infinitely many
policies, we introduce the following stricter assumptions of eventual discounting.

Assumption 2.3. There is an ℓ : X×X → R+, satisfying that x 7→ ℓ(x,B) is a Borel
measurable function for all B ∈ B(X), and B 7→ ℓ(x,B) is a Borel measure on X for
all x ∈ X, such that

(i) L : mbX → mbX is a positive linear operator,

(ii) |B(x, a, v)−B(x, a, w)| ⩽ L|v − w|(x) for all x ∈ X, and

(iii) ρ(L) < 1, where

Lh(x) :=

∫
X

h(x′)ℓ(x, dx′) (x ∈ X, h ∈ mbX), (6)

and ℓ(x, x′) ⩾ 0 for all (x, x′) ∈ X2.

We say that an RDP R is eventually discounting if either Assumption 2.1, 2.2, or 2.3
holds. We provide some useful properties regarding eventual discounting assumptions.
The following lemma shows the relationship between the spectral radius ρ(Lσ) and
the expected multiplicative of eventual discount factor dσnσ

.

Lemma 2.2. If R is regular, and Lσ and L̂ are defined as above, then the following
statements are true.

(a) For any σ ∈ Σ, ρ(Lσ) < 1 if and only if there is an nσ ∈ N such that dσnσ
< 1.

(b) For any σ ∈ Σ, ρ(Lσ) = limn→∞(dσn)
1/n.

(c) ρ(L̂) < 1 implies ρ(Lσ) < 1 for all σ ∈ Σ.

Lemma 2.2 provides a method to compute ρ(Lσ) by taking the limit of (dσn)1/n. More-
over, it implies that ρ(Lσ) < 1 and dσnσ

< 1 (for some nσ ∈ N) are equivalent.
The next example with state-dependent discounting, generalized from Chapter 10 of
Stokey (1989), is a regular RDP.

8See Claim 6 of Bloise et al. (2024).
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Example 2.1 (One-Sector Optimal Growth). An economy contains many identical
and infinitely lived households. There is a single good yt = F (kt, ℓt) produced by
capital kt and labor ℓt inputs. Labor is supplied inelastically such that ℓt = 1 for all
t, and capital depreciates at a rate δ ∈ (0, 1). Denote ct as consumption and it as
investment. Given stochastic discount, a social planner solves the problem

supEk0,z0

∞∑
t=0

(
t−1∏
i=0

β(zi, ci)

)
U(ct)

s.t. ct + it ⩽ ztyt,

0 ⩽ ℓt ⩽ 1,

kt+1 = (1− δ)kt + it (t ∈ N0),

k0 ⩾ 0 and z0 ⩾ 0 given,

where {zt}t⩾0 is a sequence of exogenous shocks generated by a transition kernel Q
on (Z,B(Z)) with Z = [1, z̄] for 1 < z̄ <∞. The state is x = (k, z), and the action is
a = c. Assume that F is continuously differentiable, strictly increasing, and strictly
concave with

F (0, ℓ) = 0, Fk(k, ℓ) > 0, Fℓ(k, ℓ) > 0, (k, ℓ > 0)

lim
k→0

Fk(k, 1) = ∞, lim
k→∞

Fk(k, 1) = 0.

Moreover, assume that U is continuous, β is continuous and strictly positive, and Q

satisfies the Feller property such that z 7→
∫
h(z′)Q(z, dz′) is bounded and continuous

for all h ∈ cbZ. Let k̄ > 0 be such that k̄ = z̄F (k̄, 1) + (1 − δ)k̄. Then, the set of
maintainable capital stock is [0, k̄]. Let the state space be X = [0, k̄]× [1, z̄], the action
space be A = [0, z̄F (k̄, 1)], the feasible correspondence be Γ(k, z) = {c ∈ A : 0 ⩽ c ⩽

zF (k, 1)}. Hence, (x, a) = ((k, z), c). Define the stochastic transition kernel by

P ((k, z), c, (dk′, dz′)) = Q(z, dz′)1{k′ = (1− δ)k + zF (k, 1)− c}dk′.

for all ((k, z), c, (k′, z′)) ∈ G× X. Let the value aggregator B be

B((k, z), c, v) = U(c) +E(k,z)[β(z, c)v(k
′, z′)] (((k, z), c, v) ∈ G×mbX),
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where (k′, z′) is generated by P ((k, z), c, ·). We can check that R = (X,A,Γ, B) is a
regular RDP.9 Moreover, we have

|B((k, z), c, v)−B((k, z), c, w)| = |E(k,z)[β(z, c)v(k
′, z′)]−E(k,z)[β(z, c)w(k

′, z′)]|

⩽ E(k,z)β(z, c)|v(k′, z′)− w(k′, z′)|.

for all ((k, z), c) ∈ G and v, w ∈ mbX. Let Lσ : mbX → mbX be

Lσh(k, z) = E
σ
(k,z)β(z, σ(k, z))h(k

′, z′) ((k, z) ∈ X, h ∈ mbX),

where Eσk,z is the expectation conditioning on (k0, z0) = (k, z) under transition kernel
P ((k, z), σ(k, z), ·) defined above. Then, we have

dσn = sup
(k,z)∈X

Lnσ1(k, z) = sup
(k,z)∈X

E
σ
(k,z)

n−1∏
t=0

β(zt, ct).

Assume β(z, c) ⩽ β̄(z) for all k and c such that there exists an n ∈ N:

sup
(k,z)∈X

E
σ
(k,z)

n−1∏
t=0

β(zt, ct) ⩽ sup
(k,z)∈X

E(k,z)

n−1∏
t=0

β̄(zt) < 1. (7)

Define L : mbX → mbX by

Lh(k, z) = E(k,z)β̄(z)h(k
′, z′) ((k, z) ∈ X, h ∈ mbX).

Hence, (7) implies supx L
n
1(x) < 1 and then ρ(L) < 1. To this end, R is eventually

discounting since Assumption 2.2 or 2.3 holds. □

2.4. Dynamic Programming. In this section, we define the optimal properties of
dynamic programming and introduce dynamic programming algorithms, including
value function iteration, Howard policy iteration, and optimistic policy iteration, to
search for optimal policies,

Let R = (X,A,Γ, B) be an RDP. Given σ ∈ Σ, if the policy operator Tσ has a unique
fixed point vσ, then we call vσ as σ-value function. We show in Section 2.5 that all
policy operators have unique fixed points under eventual discounting assumptions,
which implies that σ-value exists and is unique for any σ ∈ Σ. The (optimal) value
function v∗ of R is defined by

v∗(x) := sup
σ∈Σ

vσ(x) (x ∈ X).

9It is also a regular Markov decision process defined in Section 3.
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A policy σ∗ ∈ Σ is called optimal if vσ = v∗; that is, if

vσ(x) ⩾ vs for all s ∈ Σ and x ∈ X.

We say v satisfies the Bellman equations if Tv = v; that is v satisfies (1). We say
that Bellman’s principle of optimality holds if

σ ∈ Σ is optimal for R ⇐⇒ σ is v∗-greedy.

That is, Bellman’s principle of optimality holds whenever vσ = v∗ ⇐⇒ Tv∗ = Tσv
∗.

Bellman’s principle of optimality ensures that we can find the optimal policy if we
can compute v∗, and v∗-greedy policy exists.

The conventional dynamic programming algorithms are defined as follows (see, e.g.,
Bertsekas (2022)). Let R be regular. A sequence {vk}k⩾0 ⊂ cbX is called a value
function iteration (VFI) if vk+1 = Tvk for k ⩾ 0 with any v0 ∈ cbX. VFI iterates the
right-hand side of (1) and converges to v∗ under appropriate assumptions.

For policy iteration algorithms, we introduce the following conditions to ensure the
existence of greedy policies and continuity of policy values during iterations. Note
that if we know the greedy policies exist and are continuous for any value function,
we do not require the following conditions.10

Condition 2.2.

(a) Γ is nonempty, continuous, compact-valued, and convex-valued,

(b) (x, a) 7→ B(x, a, v) is bounded and measurable on G for all v ∈ mbX, and

(c) a 7→ B(x, a, v) is strictly quasi-concave for x ∈ X all v ∈ cbX.

Define ΣC ⊂ Σ as the subset of all continuous policies. Let Condition 2.2 hold.
Then, the optimal policy σ∗ is continuous. It can be shown that v∗ = supσ∈ΣC

vσ and
Tv = supσ∈σC Tσv for all v ∈ cbX. It then suffices to restrict the policy iterations to
continuous policies.

A sequence {σκ}k⩾0 ⊂ ΣC is called a Howard policy iteration (HPI) if σk+1 is vσk-
greedy for k ⩾ 0 and any σ0 ∈ ΣC . In each iteration, HPI evaluates the policy σ by
vσ, and if there is improvable state under vσ, it updates policy to vσ-greedy policy.

10For example, state and action spaces are finite.
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Therefore, the policy values from HPI iincrease monotonically. Define the Howard
operator H : cbX → cbX by

Hv = vσ where σ is v-greedy.

The iteration, {Hkv0}k⩾0 with v0 = vσ for σ ∈ ΣC , of the Howard operator H is an
abstract version of HPI.

A sequence {vk}k⩾0 ⊂ cbX is called an optimistic policy iteration (OPI) if, fixing
m ∈ N, vk+1 = Tmσkvk where σk is vk-greedy for k ⩾ 0 with v0 = vσ for any σ ∈ ΣC .
Observe that if m → ∞, then OPI is the same as HPI; if m = 1, OPI is the same
as VFI. Therefore, OPI can be seen as a combination of HPI and VFI. Compared
to HPI, OPI approximates vσk by Tmσkvk. Hence, OPI can be more efficient if the
calculation of vσk is time-consuming, where vσk = limn→∞ T nσkvvk , assuming that Tσk
is globally stable.

To illustrate OPI, define optimistic policy operator W : cbX → cbX by

Wv = Tmσ v (v ∈ cbX), (8)

where σ is the first policy among the list of all v-greedy policies. Then, {W kv0}k⩾0

with v0 = vσ for σ ∈ ΣC is an abstract version of OPI.

2.5. Optimality. As discussed in the introduction and the following section, we
extend the existing dynamic programming theory to incorporate the cases of action-
dependent discounting, including action-dependent time preferences introduced in
Uzawa (1968) and Becker and Mulligan (1997). In this section, we show the opti-
mality results, including the existence of optimal policies and Bellman’s Principle
of Optimality, when an RDP is eventually discounting. Moreover, the computation
algorithms, including VFI, HPI, and OPI, converge to the optimal value function or
optimal policies.

In the following theorem, define w :=
∑∞

n=0 L̂
n
1 for ∥ · ∥w.

Theorem 2.1. Suppose that R is regular and either Assumption 2.1, 2.2 or 2.3 holds.
Then, the following statements are true.

(a) Tσ is eventually contracting on mbX for all σ ∈ Σ,

(b) T is contractive on (cbX, ∥ · ∥w) if Assumption 2.2 holds,

(c) v∗ is the unique solution to the Bellman equation in cbX,
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(d) VFI converges to v∗,

(e) Bellman’s principle of optimality holds,

(f) HPI and OPI converge to σ∗ if Assumption 2.1 holds,

(g) Bellman’s principle of optimality holds, and

(h) at least one optimal (continuous) policy exists,

If Condition 2.2 is satisfied and Assumption 2.2 or 2.3 holds, then

(α) HPI converges to σ∗, and

(β) OPI converges to v∗,

where all the iterated greedy policies to HPI and OPI are continuous.

Theorem 2.1 generalizes the conventional dynamic programming theory to the case
of state-action-dependent discounting. In detail, Theorem 2.1 shows that the optimal
policy exists, the Bellman’s principle of optimality holds, VFI and OPI converge to
v∗, and HPI converges to σ∗. The Bellman’s principle of optimality guarantees that
we can first compute v∗ by VFI and find σ∗ by

σ∗(x) = argmax
a

B(x, a, v∗) (x ∈ X).

Theorem 2.1 shows that eventual discounting is sufficient for eventual contracting or
global stability of Tσ or T . This property allows us to the analyze the convergence
time of VFI.

Moreover, the value function v∗ is continuous. Note that if there is a non-continuous
function satisfying the Bellman equation, then it must be equal to or greater than the
optimal value v∗, and there is no policy σ that its σ-value vσ admits that function.11

Since we are interested in v∗, which is continuous when the RDP is regular, we can
restrict the iteration of VFI on the continuous functions. In addition, if Condition
2.2 holds and v ∈ cbX, then any policy σ ∈ Σ is dominated by some continuous policy
σc ∈ ΣC that Tσv ⩽ Tσcv. To this end, it also suffices to focus on the continuous
policies for HPI and OPI. Note that Condition 2.2 is not necessary if we can ensure
that the continuous greedy policy exists for any v ∈ cbX. In particular, if action and
state spaces are finite, the greedy policy exists so that we do not need Condition 2.2.

11That is, if Tw = w for some non-continuous w ∈ mbX, then w ⩾ v∗ and w > vσ for any σ ∈ Σ.
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2.6. Generalized Blackwell’s Condition. The generalized Blackwell’s condition
for the global stability of the Bellman operator T or policy operator Tσ is provided
as follows.

Proposition 2.1. Let T be an order-preserving self-map on U ⊂ mbX. If there exists
a positive linear operator G on mbX such that ρ(G) < 1 and

T (v + c) ⩽ T v +Gc for all c, v ∈ U with c ⩾ 0,

then T is eventually contracting on U .

Therefore, if we can check that, for any σ ∈ Σ, there exists a positive linear operator
Lσ on mbX such that

Tσ(v + c)(x) = B(x, σ(x), v + c) ⩽ B(x, σ(x), v) + Lσc(x) = Tσv(x) + Lσc(x)

for all x ∈ X and c, v ∈ mbX with c ⩾ 0, then Tσ is eventually contracting and has a
unique fixed point vσ.

3. Markov Decision Process with Eventual Discounting

In this section, we focus on a Markov decision process with state-action-dependent
discounting and bounded rewards.

3.1. Markov Decision Process. A Markov decision process is an RDP such that
the value aggregator is separated into reward and expected future continuing value.
In detail, a Markov decision process M is an RDP (X,A,Γ, B) such that

B(x, a, v) :=

∫
X

[r(x, a, x′) + β(x, a, x′)v(x′)]P (x, a, dx′)

= Ex,a[r(x, a,X
′) + β(x, a,X ′)v(X ′)]

(9)

for all (x, a) ∈ G and v ∈ mbX, where

• r : G× X → R is a Borel measurable function, referred to as the reward,

• β : G × X → R+ be a Borel measurable and everywhere positive function,
referred to as the discount factors, and

• P : G × X → R+ is a stochastic kernel on X contingent on current state and
action; that is, B 7→ P (x, a,B) is a Borel probability measure on X for all
(x, a) ∈ G, and (x, a) 7→ P (x, a,B) is a measurable function on G for all
B ∈ B(X).
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To simplify notation, denote βσ, Pσ and rσ as βσ(x, x′) := β(x, σ(x), x′), Pσ(x, ·) :=

P (x, σ(x), ·), and rσ(x) := Eσxr(x, σ(x), X ′), respectively, for all x, x′ and any σ ∈ Σ,
where Eσx denotes the expectation under Pσ transition kernel conditioning on x. Also,
denote r(x, a) := Ex,ar(x, a,X

′) for any (x, a) ∈ G. Given an MDP M and σ ∈ Σ,
the policy operator Tσ following (9) becomes

Tσv(x) := rσ(x) +

∫
X

βσ(x, x
′)v(x′)Pσ(x, x

′)dx′ (x ∈ X, v ∈ mbX).

If Tσ has a unique fixed point vσ ∈ mbX, then iteration implies vσ = Tσvσ = T nσ vσ.
Letting n→ ∞, if it converges, we have

vσ(x) := E
σ
x

[
∞∑
t=0

(
t−1∏
i=0

βσ(Xi, Xi+1)

)
rσ(Xt)

]
(x ∈ X). (10)

where
∏−1

i=0 β
σ
i = 1 by convention and {Xt}t∈N0 is a stochastic process such that

X0 = x and Xt+1 is generated by Pσ(Xt, ·) for all t ∈ N0. Moreover, the Bellman
operator becomes

Tv(x) = sup
a∈Γ(x)

{r(x, a) +Ex,aβ(x, a,X ′)v(X ′)} (x ∈ X, v ∈ cbX).

We introduce the following regular conditions to an MDP.

Condition 3.1.

(i) Γ is nonempty, compact-valued, and continuous.

(ii) (x, a) 7→ r(x, a) is continuous and bounded on G.

(iii) β is bounded and strictly positive,

(iv) (x, a) 7→
∫
X
f(y)β(x, a, y)P (x, a, dy) is bounded and continuous on G for every

f ∈ cbX.

We say that an MDP M is regular if condition 3.1 is satisfied. Condition 3.1 ensures
that M is a regular RDP and then the greedy policies exist by Lemma 2.1.

Lemma 3.1. If an MDP M such that Condition 3.1 holds, then it is a regular RDP,
and the following statements are true.

(a) Tσ is a self-map on mbX for all σ ∈ Σ.

(b) T and Tσ are self-maps on cbX for all σ ∈ ΣC.

(c) For all v ∈ cbX, there exists a v-greedy policy.
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To ensure the continuity of optimal policies or greedy policies, we introduce the
conditions with concavity.

Condition 3.2.

(i) Γ is nonempty, continuous, compact-valued, and convex-valued.

(ii) (x, a) 7→ r(x, a) is continuous and bounded on G, and a 7→ r(x, a) is strictly
concave for all x ∈ X.

(iii) β is bounded and strictly positive,

(iv) (x, a) 7→
∫
X
f(y)β(x, a, y)P (x, a, dy) is bounded and continuous on G for every

f ∈ cbX,

(v) a 7→
∫
X
f(y)β(x, a, y)P (x, a, dy) is concave for all x ∈ X and f ∈ cbX.

Condition 3.2 guarantees that continuous v-greedy policies exist for all v ∈ cbX, and
HPI and OPI are well-behaved.

3.2. Eventual Discounting. Let M be an MDP. To this end, (3) becomes

B(x, a, v)−B(x, a, w) ⩽
∫
X

(v(x′)− w(x′))β(x, a, x′)P (x, a, dx′)

for all (x, a) ∈ G and v, w ∈ mbX. The corresponding Lσ is defined by

Lσh(x) :=

∫
X

h(x′)β(x, σ(x), x′)P (x, σ(x), dx′) = Eσxβσ(x,X
′)h(X ′) (11)

for all x ∈ X and h ∈ mbX, which returns the expected discounted present value of
h. We say that Tσ is eventually discounting if ρ(Lσ) < 1, or equivalently, there is
nσ ∈ N such that

dσnσ
:= sup

x
E
σ
x

nσ−1∏
t=0

βσ(Xt, Xt+1) < 1.

We can show by iteration that dσnσ
= supx L

nσ
σ 1(x). Define dn : X → R+ by

dn(x) := sup
σ1

{
E
σ1
x βσ1(X0, X1) sup

σ2

{
E
σ2
X1
βσ2(X1, X2) sup

σ3

{
· · ·

· · · sup
σn

{
E
σn
Xn−1

βσn(Xn−1, Xn)
}
· · ·

}}}
.

(12)
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for all x ∈ X. That is, d1(x) = supσ1 E
σ1
x βσ1(X0, X1), and dn(x) = supσn E

σn
x βσn(x,X

′)dn−1(X
′)

for n ⩾ 2 and x ∈ X. We will show that supx dn(x) < 1, for some n ∈ N, implies the
global stability of T . Define L̂ : mbX → mbX by

L̂h(x) := sup
σ∈Σ

Lσh(x) (x ∈ X, h ∈ mbX.)

The operator L̂h returns the highest expected discounted present value of h among all
feasible policies that determine the subjective discount factors. Then, iteration yields
dn(x) = L̂n1(x) for all x ∈ X. We consider the following assumptions for eventual
discounting.

Assumption 3.1. Σ is finite, and Tσ is eventually discounting for any σ ∈ Σ.

Assumption 3.2. Either ρ(L̂) < 1 or supx dn(x) < 1 for some n ∈ N.

Assumption 3.3. There is an ℓ : X2 → R+, satisfying that x 7→ ℓ(x,B) is a Borel
measurable function for all B ∈ B(X), and B 7→ ℓ(x,B) is a Borel measure on X for
all x ∈ X, such that

Lσh ⩽ Lh

for any h ∈ mbX+ and ρ(L) < 1, where L is defined by

Lh(x) =

∫
X

h(x′)ℓ(x, dx′)

for all x ∈ X.

We say that M is eventually discounting if either Assumption 3.1, 3.2, or 3.3 is
satisfied. Eventual discounting implies that the expected discounted present value
of the future reward is bounded above and converges to zero as the time approaches
infinity, in the sense that Lnσrσ → 0 as n → ∞ for all σ ∈ Σ. Assumption 3.3 is a
sufficient condition to Assumption 3.1 and 3.2. Also, ρ(L̂) < 1 or supx dn(x) < 1 for
some n ∈ N implies ρ(Lσ) < 1 and that Tσ is eventually discounting for all σ ∈ Σ.

Lemma 3.2. If M is regular, and Assumption 3.3 holds, then Assumption 3.1 and
3.2 hold.

Example 3.1 (Firm valuation with stochastic interest rates). Assume that the state
space X is finite and follows a stochastic kernel P : X × X → R+. Suppose that the
discount factors are

βt :=
1

1 + rt
(t ∈ N)
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where rt = r(Xt) denotes the (real) interest rates following a stochastic process. If
πt = π(Xt) is the profit at time t, then the expected present value of the firm is

v(x) = Ex

∞∑
t=0

(
t∏
i=0

βi

)
πt,

given current state X0 = x. Let A(x, x′) = P (x, x′)/(1 + r(x)) for all (x, x′) ∈ X× X.
If ρ(A) < 1, then Assumption 3.3 is satisfied and v = π+Av (Sargent and Stachurski,
2023). □

Example 3.2 (Uzawa Time Preferences). Mendoza (1991), Schmitt-Grohé and Uribe
(2003), Vasilev (2022a,b), and Izadi and Lamsoo (2022) study a small open economy
where a representative household has Uzawa preference that the richer are more impa-
tient than the poor. Uzawa preference has the merits that it stabilizes the small open
economy and generates a non-degenerate distribution of wealth (Guest and McDon-
ald, 2001). The household chooses consumption ct and working hours ht to maximize
the utility

E0

∞∑
t=0

θtU(ct, ht)

U(c, h) =
(c− ν−1hν)1−γ

1− γ

θt+1 = b(ct, ht)θt, t ⩾ 0 with θ0 = 1

b(c, h) = (1 + c− ν−1hν)−ψ,

where ν > 1 is the labor supply elasticity, ψ > 0 is the elasticity of discount factor
with respect to component 1 + c− ν−1hν , and γ > 1 measures the degree of relative
risk aversion. The composite commodity ct − ν−1hν is assumed to be positive, and
then the utility is bounded above.12 We can see that b(c, h) < 1 when c > ν−1hν .
Hence, the feasible correspondence is the subset of {(c, h) : c > ν−1hν} such that the
discount factors are strictly less than one. To solve the problem by discretization in
programming, we can assume there is ε > 0 such that c − ν−1hν ⩾ ε > 0 and then
b(c, h) ⩽ (1+ε)−ψ < 1 for any (c, h), so there exists an n ∈ N such that supx dn(x) < 1

, defined by (12), whence Assumption 3.2 or 3.3 holds.13 □

12Otherwise, since γ > 1, if c ⩽ ν−1hν , then U(c, h) → ∞ as c ↑ ν−1hν . Then, households can
arbitrarily increase utility. Since the domain, c ̸= ν−1hν , is open, there is no maximizer in this case.

13On the other hand, the steady state satisfies β(c, h)(1 + r) = 1 so that β(c, h) < 1, where
r > 0 is the real interest rate. For example, Vasilev (2022a) calibrate the parameters such that
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Example 3.3. Durdu et al. (2009) consider a small open economy such that a repre-
sentative household chooses the optimal consumption ct and maximizes the preference

E0

∞∑
t=0

exp

{
−

t−1∑
τ=0

ψ ln(1 + cτ )

}
c1−γt

1− γ
,

where ψ > 0 is the elasticity of the rate of time preference with respect to 1 + c.
Since βt = exp{−ψ ln(1 + ct)} < 1 for ct > 0, if we discretize the consumption space
and consider inner solutions, then we have c ⩾ ε and β(c) ⩽ 1/(1 + ε)ψ for some
ε > 0. □

Example 3.4 (Uzawa Time Preferences with Stochastic Discounting). This example
considers both the Uzawa time preference of Durdu et al. (2009) and state-dependent
discounting of Hubmer et al. (2021):14

βt = β(ct, Zt) = Zt exp{−ψ ln(1 + ct)},

where ct is consumption and Zt is an AR(1) process follows

Zt+1 = ρZZt + (1− ρZ)µZ + σεεt+1 {εt}
IID∼ N(0, 1) (13)

with ρZ = 0.992, µZ = 0.944, σε = 0.0006. Let Q be the transition kernel of Zt. They
discretize the process onto a grid of N = 15 states by Tauchen’s method which allows
us to write the operator L, defined in Assumption 3.3, as a matrix

Lij = β(xi)Q(xi, xj), 1 ⩽ i, j ⩽ N.

The spectral radius of matrix L is 0.9469, computed by Stachurski and Zhang (2021).
Then, since βt ⩽ Zt, there exists n ∈ N such that

E0β0β1 · · · βn−1 ⩽ E0Z0Z1 · · ·Zn−1 < 1

for any consumption path. □

Example 3.5 (Becker-Mulligan Time Preferences). Becker and Mulligan (1997) pro-
pose the endogenous time preferences that are increasing in future-oriented capital.

b(c, h) = 0.982. If we solve the model around the steady state, the discount factor is bounded away
from one.

14The literature of state-dependent discounting with AR(1) process includes Hills and Nakata
(2018), Hills et al. (2019) and Nakata (2016).
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Stern (2006) considers Becker-Mulligan time preferences in an optimal growth model:

sup
{ct,st,kt}t⩾0

∞∑
t=1

t−1∏
i=1

β(si)U(ct)

s.t. ct + πst + kt ⩽ f(kt−1), ct ⩾ 0, st ⩾ 0, kt ⩾ 0, for all t ∈ N

where k0 is given, β : [0,∞) → (0,∞) is continuous, concave and strictly increasing, π
is the price of st, and kt denotes capital.15 Stern (2006) assumes that f is continuous
and strictly increasing, and there exists a km ⩾ 0 such that β(km/π) < 1 and f(k) < k

whenever k > km. Hence, we have β(s) ⩽ β(km/π) < 1 for all s ∈ [0, km/π], so
Assumption 2.1 is satisfied.

Erol et al. (2011) also consider a similar model:

sup
{ct,kt+1}t⩾1

∞∑
t=0

t∏
i=1

β(ki)U(ct)

s.t. ct + kt+1 ⩽ f(kt), ct ⩾ 0, kt ⩾ 0, for all t ∈ N

where k0 is given. Erol et al. (2011) assumes that β : [0,∞) → (0,∞) is continuous,
differentiable, strictly increasing and supk>0 β(k) < 1, so Assumption 3.2 is satisfied.16

□

Example 3.6 (Becker-Mulligan Preference with Stochastic Discounting). This ex-
ample modifies the Becker-Mulligan Preference of Erol et al. (2011) with stochastic
uncertainty. Consider a model from Example 3.5:

sup
{ct,kt+1}t⩾1

E0

∞∑
t=0

(
t∏
i=1

Ziβ(ki)

)
U(ct)

s.t. ct + kt+1 ⩽ f(kt), ct ⩾ 0, kt ⩾ 0, for all t ∈ N

where k0 is given, and {Zt}t⩾0 is an AR(1) process satisfying that there exists n ∈ N
such that E0Z1 · · ·Zn < 1. Similar to Erol et al. (2011), assumes that β : [0,∞) →
(0,∞) is continuous, differentiable, strictly increasing and supk>0 β(k) ⩽ 1. To this
end, we have

E0Z1β(k1)Z2β(k2) · · ·Znβ(kn) ⩽ E0Z1Z2 · · ·Zn < 1.

15The time preference β(st) is interpreted as the degree to which generation t cares for generation
t+ 1, while variable st represents actions or resources that the parent could take to strengthen the
relationship with her child.

16Erol et al. (2011) also assumes that k has a compact support.
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for any {kt}t⩾0, which implies Assumption 3.2 and 3.3. □

3.3. Optimality. In this section, we present the optimality of an MDP with eventual
discounting. Our results show that the standard methods to compute the optimal
value and policies hold for the state-action-dependent dynamic programming such as
Uzawa or Becker-Mulligan time preferences with stochastic discounting in Example
3.4 and Example 3.6.

In the following theorem, assuming eventual discounting, define

wσ(x) := E
σ
x

∞∑
t=0

t−1∏
i=0

βσi (x ∈ X) and λσ := sup
x∈X

wσ(x)− 1

wσ(x)
< 1

Also, define

w :=
∞∑
n=1

L̂n1 and λ := sup
x∈X

w(x)− 1

w(x)
< 1.

We show in the appendix that Lσwσ ⩽ λσwσ for all σ ∈ Σ and L̂w ⩽ λw.

Theorem 3.1. Let M be regular. If M admits r ≡ f ∈ cbX+, and T has a fixed
point in cbX, then Assumption 3.2 holds. If either Assumption 3.1, 3.2 or 3.3 holds,
then the following statements are true.

(a) Tσ is eventually contracting on mbX and contracting on (mbX, ∥ · ∥wσ) with
modulus λσ for all σ ∈ Σ,

(b) T is contracting on (cbX, ∥ · ∥w) with modulus λ if if Assumption 3.2 holds,

(c) v∗ is the unique solution to the Bellman equation in cbX,

(d) VFI converges to v∗,

(e) HPI and OPI converge to σ∗ if if Assumption 3.1 holds,

(f) Bellman’s principle of optimality holds, and

(g) at least one optimal (continuous) policy exists,

If Condition 3.2 is satisfied and Assumption 3.2 or 3.3 holds, then

(α) HPI converges to σ∗, and

(β) OPI converges to v∗,

where all the iterated greedy policies to HPI and OPI are continuous.
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Theorem 3.1 generalizes the traditional constant-discounting dynamic programming
theory to the case of state-action-dependent discounting. In particular, Theorem 3.1
shows that if and MDP M is regular and eventually discounting, then the optimal
policy exists, Bellman’s principle of optimality holds, and VFI converges to v∗. More-
over, Theorem 3.1 proves that T and Tσ are contractive in some weighted supremum
norm. The latter immediately allows us to analyze the convergence time.

In addition, Theorem 3.1 shows that the eventual discounting condition, supx dn(x) <
1 for some n ∈ X, is necessary if we allow the reward to be only state-dependent
r ≡ f ∈ cbX+, and there exists v ∈ cbX satisfying the Bellman equation (i.e., T
admits a fixed point in cbX.) This implies that the condition ρ(L̂) < 1 is a necessary
condition if we want a well-behaved dynamic programming model. If ρ(L̂) ⩾ 1,
Theorem 3.1 implies that VFI does not converge, and there is no solution to the
Bellman equation or the maximized lifetime value.

Moreover, Theorem 3.1 demonstrates that the optimality of Example 3.4 of Uzawa
preferences or Example 3.6 of Becker-Mulligan time preferences holds true. In addi-
tion, the optimal policy can be obtained by the v∗-greedy policy, where v∗ is computed
by VFI.

4. Necessity of Eventual Discounting

In this section, we investigate the necessity of eventual discounting for both the ex-
istence and uniqueness of the policy values. That is, we show the necessity of the
spectral radius conditions to the existence and uniqueness of fixed points of policy op-
erators in the environment of compact state space. Since the convergence of Howard
policy iteration and optimistic policy iteration depend on the global stability of policy
operators, eventual discounting for policy operators is essential to an MDP. Further-
more, we demonstrate that the convergence rate of Tσ is the corresponding spectral
radius of the expected discounting operator.

4.1. An MDP with a Compact State Space. We first establish an MDP with a
compact state space and positive rewards. Let M = (X,A,Γ, B) be an MDP, where
value aggregator B follows (9). We consider the following regular conditions. Let
mbX+ (resp. cbX+) denote the set of everywhere positive functions in mbX (resp.
cbX.) We consider the following regular conditions throughout this section.
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Condition 4.1.

(i) X is compact,

(ii) β and P are continuous, and

(iii) (x, a) 7→ r(x, a) is strictly positive and continuous on G, and a 7→ r(x, a) is
strictly concave for all x ∈ X,

(iv) Γ is nonempty, continuous, compact-valued and convex-valued,

(v) (x, a) 7→
∫
X
f(y)β(x, a, y)P (x, a, dy) is continuous for all f ∈ cbX, and

(vi) a 7→
∫
X
f(y)β(x, a, y)P (x, a, dy) is concave for all x ∈ X and f ∈ cbX,

Condition 4.1 is strict since it may be challenging to show that Condition 4.1 (iii) and
(vi) hold at the same time. In some simple cases, Condition 4.1 (vi) holds if β and P
are only state-dependent. Another possible condition is that β does not depend on
future states, P is not action-dependent, and a 7→ β(x, a)

∫
f(y)P (x, dy) is concave

for all x ∈ X and f ∈ cbX.

Condition 4.1 is similar to Condition 3.2. The main differences are that X is compact
and r is strictly positive, which can be attained by scaling up a bounded reward.
Then, a continuous v-greedy policy exists for any v ∈ cbX. Moreover, T and Tσ are
self-maps on cbX+ for σ ∈ ΣC .

Lemma 4.1. If Condition 4.1 holds, then the following statements are true.

(a) Tσ is a self-map on mbX+ for all σ ∈ Σ.

(b) T and Tσ are self-maps on cbX+ for all σ ∈ ΣC.

(c) For all v ∈ cbX+, there exists a continuous v-greedy policy.

An MDP M is ergodic if for each policy σ ∈ Σ the induced Pσ-Markov chain is
ergodic/irreducible. The next assumption guarantees that M is ergodic. Given
σ ∈ Σ, let P n

σ be defined by P 1
σ = Pσ and P n

σ =
∫
Pσ(x, dy)P

n−1
σ (dy, z) for all

(x, z) ∈ X× X and i ∈ N.

Assumption 4.1. For all σ ∈ Σ, there exists an n ∈ N such that the transition
density P n

σ is positive everywhere.

Assumption 4.1 implies that the induced Markov chain is irreducible since P n
σ is

positive everywhere, and then all states will be visited eventually.
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Fix σ ∈ ΣC . Denote kσ(x, dx′) := βσ(x, x
′)Pσ(x, dx

′)/β̄σ(x) for all (x, x′) ∈ X × X,
where

β̄σ(x) :=

∫
βσ(x, x

′)Pσ(x, dx
′).

Note that since β is strictly positive, β̄ is strictly positive. We can write Lσ as

Lσv(x) = β̄σ(x)

∫
v(x′)kσ(x, dx

′) (x ∈ X, v ∈ cbX+).

Given σ ∈ ΣC , denote eσ as the eigenvector of Lσ corresponding to its spectral radius
satisfying Lσeσ = ρ(Lσ)eσ. We show in the appendix that L2

σ is a compact operator
such that eσ ∈ cbX exists and is everywhere positive. The following proposition shows
that the spectral radius and the corresponding eigenfunction dominate the contraction
of the policy operator, in the sense that ρ(Lσ) < 1 if and only if Tσ is contracting on
(cbX+, ∥ · ∥eσ) with modulus ρ(Lσ). We consider the following eventual discounting
assumption.

Assumption 4.2.

(a) Tσ is eventually discounting for all σ ∈ Σ.

(b) ρ(L̄) < 1, where L̄ : cbX+ → cbX+ is defined by

L̄v := sup
σ∈ΣC

Lσv

for v ∈ cbX+.

Given the regular conditions, we can restrict the policy set to continuous policies
when we are searching for greedy policies. In this case, we focus on the sublinear
operator L̄. Then, the maximized expected multiplicative of discount factors, L̄n1,
becomes

dC,n(x) := sup
σ1∈ΣC

{
E
σ1
x βσ1(X0, X1) sup

σ2∈ΣC

{
E
σ2
X1
βσ2(X1, X2) sup

σ3∈ΣC

{
· · ·

· · · sup
σn∈ΣC

{
E
σn
Xn−1

βσn(Xn−1, Xn)
}
· · ·

}}}
.

The eventual discounting ρ(L̄) < 1 is equivalent to supx dC,n(x) < 1. The following
proposition shows that the eventual discounting of Tσ is necessary for the existence
and uniqueness of vσ.
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Proposition 4.1. If Assumption 4.1 and Condition 4.1 hold, then for all σ ∈ ΣC the
following statements are equivalent.

(a) ρ(Lσ) < 1.

(b) There exists an nσ ∈ N such that dσnσ
< 1.

(c) Tσ is globally stable on cbX+.

(d) Tσ is contracting on (cbX+, ∥ · ∥eσ) with modulus ρ(Lσ).

(e) Tσ has a fixed point in cbX+.

(f) Tσ has a unique fixed point in cbX+.

Moreover, if ρ(Lσ) ⩾ 1, then Tσ has no fixed point in cbX+.

Proposition 4.1 shows that ρ(Lσ) < 1 is necessary for the existence and uniqueness of
vσ, the fixed point of Tσ. If, in addition, we have supx dn(x) < 1 defined by (12), then
the MDP is eventually discounting, whence the optimal properties in Theorem 3.1
are true. We summarize the results in the following theorem, which can be considered
a corollary of Theorem 2.1. To apply Theorem 2.1, we use the eigenvectors as the
weighting vector for the weighted supremum norm.

In the following theorem, let w :=
∑∞

n=0 L̄
n
1 and λ = supx(w(x)− 1)/w(x).

Theorem 4.1. Let Condition 4.1 hold. If M admits r ≡ f ∈ cbX+, and T has a
fixed point in cbX+, then ρ(L̄) < 1. If Assumption 4.1 and 4.2 hold, then the following
statements are true.

(a) Tσ is eventually contracting on mbX+ for all σ ∈ Σ, and Tσ is contracting with
modulus ρ(Lσ) on (cbX+, ∥ · ∥eσ) for all σ ∈ ΣC,

(b) T is contracting on (cbX+, ∥ · ∥w) with modulus λ,

(c) v∗ is the unique solution to the Bellman equation in cbX+,

(d) HPI converges to σ∗,

(e) VFI converges to v∗,

(f) OPI converges to v∗,

(g) Bellman’s principle of optimality holds, and

(h) at least one optimal continuous policy exists.

where all the iterated greedy policies to HPI and OPI are continuous.
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5. Applications

In this section, we apply the main results to optimal growth and optimal default
problems.

5.1. Optimal Growth. We can apply the main results to the following examples of
optimal growth models.

Example 5.1 (One-sector Optimal Growth, Continued). Let M be the MDP defined
in Example 2.1. The Bellman equation is

v(k, z) = sup
c∈[0,zF (k,1)]

{
U(c)+

β(z, c)

∫
X

v(k′, z′)Q(z, dz′)1{k′ = (1− δ)k + zF (k, 1)− c}dk′
}
.

Assume that there is an n ∈ N such that

dσn ⩽ dn := sup
x

sup
σ
E
σ
x

n−1∏
t=0

β(Zt, σ(Zt)) < 1

for all σ ∈ Σ. Then, we have supσ∈ΣC
dσnσ

< 1, so Theorem 3.1 shows that the
optimality of dynamic programming holds and the related dynamic programming
algorithms converge to the unique optimal value. □

Example 5.2 (Uzawa Time Preference with Stochastic Discounting, Continued).
This example continues Example 3.4 by modifying the optimal saving problem in
Hubmer et al. (2021) to the case of Uzawa endogenous time preference. Following
Hubmer et al. (2021), suppose that the policy operator is

Tσv(x, z) = u(R(x, z)x+ y(x, z)− σ(x))

+ β(R(x, z)x+ y(x, z)− σ(x), z)

∫
v(σ(x), z′)Q(z, dz′)

where x ∈ X := R+ is the present asset, z is the exogenous shocks generated by Q as
defined by Example 3.4, R(x, z) is the gross return rates on asset holdings, y(x, z) is
the labor net income, R(x, z)x + y(x, z) − σ(x) = c is the consumption, and σ(x) is
the asset or saving leaving to the next period. Assume that β and {Zt} are defined
as Example 3.4. Let the utility function be

u(c) :=
c1−γ

1− γ
(γ > 1).
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The feasible correspondence is

Γ(x, z) := {x′ ∈ R : x̄ ⩽ x′ ⩽ R(x, z)x+ y(x, z)}

To solve the problem numerically, we discretize both X and Z into finite grid points. To
this end, the reward function is bounded, and the continuity assumptions in Condition
3.1 are satisfied. As discussed in Example 3.4, the MDP is eventually discounting.
Therefore, all of the conclusions in Theorem 3.1 hold. □

5.2. Optimal Default. This example considers an optimal saving problem with de-
fault following Arellano (2008), Hatchondo et al. (2009), Yue (2010), Hatchondo et al.
(2016) and Ma et al. (2022). We assume state-action-dependent discounting. A coun-
try with current assets wt chooses between continuing to participate in international
financial markets and defaulting. Let yt = y(Zt, ξt) be output, where {Zt} is a Markov
process and {ξt} is an IID shock. Assume that default results in permanent exclusion
from financial markets which yields the lifetime value

vd(y, z) = Ez

∞∑
t=0

t−1∏
i=0

βd(Zi)u(yt),

where βd(z) represents the stochastic discount dependent on state z given defaulting.
The value of continued participation in the financial market is

vc(w, y, z) = sup
−b⩽w′⩽R(w+y)

u(w + y − w′/R) + β(z, w′)Ezv(w
′, Y ′, Z ′)

where b > 0 is a constant borrowing constraint, β(z, w′) is the discount factor depends
on state z and wealth w′, in the spirit of Becker-Mulligan time preferences in Example
3.5, and v is the value function satisfying

v(w, y, z) = max{vd(y, z), vc(w, y, z)}.

The Bellman equation is

v(w, y, z) = sup
δ∈{0,1}

−b⩽w′⩽R(w+y)

{
δ

[
Ez

∞∑
t=0

t−1∏
i=0

βd(Zi)u(yt)

]

+ (1− δ)
[
u(w + y − w′/R) + β(z, w′)Ezv(w

′, Y ′, Z ′)
]}

.

Let X = W × Y × Z where W , Y and Z are domains of wt, yt and zt, respectively.
Assume that u is continuous and either u is bounded or zt and ξt have compact
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supports. Suppose that βd and β are continuous, bounded, strictly positive, that
there are n,m ∈ N such that

sup
(w,z,y)∈X

Ez

n−1∏
t=0

βd(Zt) < 1, and

sup
σ∈Σ

sup
(w,z,y)∈X

Ez

m−1∏
t=0

β(Zt, σw′(wt, Yt, Zt)) < 1

where σ(w, y, z) = (σδ(w, y, z), σw′(w, y, z)) is the policy of action (δ, w′) given state
(w, y, z) ∈ X. Therefore, vd is bounded and continuous and the MDP is eventually
discounting, so all conclusions in Theorem 3.1 hold.

5.3. Asset Pricing. There is an ex-dividend contract that trades at prices Πt and
pays dividend Dt. To this end, purchasing this contract at t and selling at t+1 pays
Πt+1 +Dt+1. Let the Lucas stochastic discount factor be

Mt+1 = β̄

(
Ct+1

Ct

)−γ

,

where β̄ > 0 is a constant discount factor measuring the impatience of the agent.
Given the absence of arbitrage, the price at time t must satisfy

Πt = EtMt+1(Πt+1 +Dt+1). (14)

Let {Xt}t⩾0 be a Q-Markov process on a compact state space X. Suppose that the
dividend growth obeys

ln
Dt+1

Dt

= µd +Xt + σdηd,t+1

where {ηd,t}t⩾0 is IID and standard normal. Moreover, consumption growth obeys

ln
Ct+1

Ct
= µc +Xt + σcηc,t+1

where {ηc,t}t⩾0 is IID and standard normal. Let Vt := Πt/Dt be the price-dividend
ratio. Then, we obtain

Vt =
Πt

Dt

= Et

[
Mt+1

Dt+1

Dt

(
Πt+1

Dt+1

+ 1

)]
= Et

[
β̄ exp(−γµc + µd + (1− γ)Xt − γσcηc,t+1 + σdηd,t+1) (Vt+1 + 1)

]
.

(15)

Conditioning on Xt = x, (15) yields the value function

v(x) =

∫
X

β̄ exp

(
−γµc + µd + (1− γ)x+

γ2σ2
c + σ2

d

2

)
(1 + v(x′))Q(x, dx′)
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for all x ∈ X and v ∈ cbX. Define A : cbX → cbX by

Af(x, x′) :=

∫
X

β̄ exp

(
−γµc + µd + (1− γ)x+

γ2σ2
c + σ2

d

2

)
f(x′)Q(x, dx′)

for all x ∈ X and f ∈ cbX. We define the corresponding discount function

β(x) := β̄ exp

(
−γµc + µd + (1− γ)x+

γ2σ2
c + σ2

d

2

)
for all x ∈ X. Now, if x 7→ β(x)

∫
X
f(x′)Q(x, dx′) is continuous for any f ∈ cbX, then

a version of Theorem 3.1 without policy (or Lemma A.15) shows that A has a unique
fixed point if ρ(A) < 1. Furthermore, if Q admits a continuous density and there is
n ∈ N such that Qn is everywhere positive, then a version of Proposition 4.1 without
policy shows that A has a unique fixed point if and only if ρ(A) < 1.

5.3.1. Incomplete Market with Subjective Discounting. This section considers the as-
set pricing with heterogeneous expectations in Harrison and Kreps (1978). Investors
are risk-neutral. Suppose that there are finitely many investor classes, denoted
by set A. Agents in each class a ∈ A have a subjective probability distribution
Pa : X × X → R+. Fix the random states {Xt} ⊂ X. We further assume that agents
in class a ∈ A have subjective time preferences such that βt = βa(Xt, Xt+1) for a ∈ A.
Let Πt = π(Xt) and Dt = d(Xt) for all t. Harrison and Kreps (1978) shows that the
price scheme is consistent if and only if17

Πt = max
a∈A

E
a[βt(Πt+1 +Dt+1)].

The Bellman equation is

Πt = max
a∈A

E
a[βt(Πt+1 +Dt+1)].

π(x) = max
a∈A

E
a[βa(x, x

′)(π(x′) + d(x′))]

= max
a∈A

∫
X

βa(x, x
′)[π(x′) + d(x′)]Pa(x, dx

′)

for x ∈ X. Define r(x, a) :=
∫
X
βa(x, x

′)π(x′)Pa(x, dx
′) and

Taπ(x) := r(x, a) +

∫
X

βa(x, x
′)π(x′)Pa(x, dx

′)

17A price is called consistent when it prevents any investor from achieving an excessive expected
return through adroit and legitimate speculation.
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for all a ∈ A and x ∈ X. If r is bounded and continuous, and the MDP is eventually
discounting that either Assumption 3.2 or 3.3 holds, then Theorem 3.1 shows that
the optimal price π∗ is unique, the optimality of dynamic programming holds, and
the VFI will converge to π∗.

6. Unbounded Rewards

In this section, we study an eventually discounting MDP with an unbounded reward
function, which generalizes the main results in Section 3.

6.1. MDP with Unbounded Rewards. Throughout this section, we assume the
following regular condition with unbounded reward r : G → R ∪ {−∞,∞}.18

Condition 6.1.

(i) Γ is nonempty, compact-valued.

(ii) r is u.s.c..

(iii) β is bounded, continuous, and strictly positive.

(iv) (x, a) 7→
∫
X
f(y)β(x, a, y)P (x, a, dy) is bounded and continuous on G whenever

f ∈ cbX.

If Condition 6.1 is satisfied, define spaces V and G by

V := {v : X → R ∪ {−∞} : v is u.s.c., v/κ is bounded above,

and (x, a) 7→ Ex,av(x
′) is bounded below},

G := {g : G → R : g is u.s.c. and bounded below, ∥g∥κ <∞}.

The regular conditions, with the assumptions below, ensure the existence of a greedy
policy. In this section, we say that an MDP is regular if Condition 6.1 holds.

Define the maximal reward function r̄ and (conditionally) expected maximal reward
function r̂ as

r̄ := sup
a∈Γ(x)

r(x, a) (x ∈ X) and r̂(x, a) := Ex,ar̄(x) ((x, a) ∈ G). (16)

We introduce a mild assumption that r̂ is bounded below and r̄ is bounded above by
some function following Ma et al. (2022).

18The conditions for the case of measurable functions are presented in the appendix.
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Assumption 6.1.

(i) There exist a κ : X → [1,∞) and a constant d ⩾ 0 such that r̄(x) ⩽ dκ(x) and
a 7→ Ex,aκ(X

′) is continuous for all x ∈ X. Moreover, if Condition 6.1 holds,
then κ is also continuous.

(ii) There exist constant n ∈ N and α ∈ R and a linear operator L : V → V such
that ρ(L) < 1, ∥L∥ <∞, ∥Ln∥ < 1, α ∈ (0, 1/∥Ln∥1/n) and

Ex,aβ(x, a,X
′)κ(X ′)Lt1(X ′) ⩽ ακ(x)Lt+1

1(x)

for all (x, a) ∈ G and t ∈ {0, 1, . . . , n}.
(iii) r̂ is bounded below.

If κ ≡ 1 and α = 1, then Assumption 6.1 (ii) is the same as Assumption 2.3.
Hence, Assumption 2.3 extends the eventual contracting of Assumption 2.3. Also,
Assumption 6.1 implies that the pair (G, ∥ · ∥κ) is a Banach space.

Recall that the Bellman equation is

v(x) = sup
a∈Γ(x)

{r(x, a) +Ex,a[β(x, a,X ′)v(X ′)]}.

Define the action-value function g(x, a) := Ex,aβ(x, a,X
′)v(X ′) for any (x, a) ∈ G,

which is the expected (discounted) future value conditioning on (x, a). The Bellman
equation can be written as v(x) = supa∈Γ(x){r(x, a) + g(x, a)}. Changing (x, a) to
(x′, a′), multiplying β(x, a, x′), and taking expectation yield

g(x, a) = Ex,a

[
β(x, a,X ′) sup

a′∈Γ(X′)

{r(X ′, a′) + g(X ′, a′)}

]
(17)

for all (x, a) ∈ G. Define the expected value operator E : RX → R
G by

Ev(x, a) := Ex,aβ(x, a,X
′)v(X ′) ((x, a) ∈ G, v ∈ RX).

Define the maximum value operator M : G → V by

Mg(x) = sup
a∈Γ(x)

{r(x, a) + g(x, a)} (x ∈ X, g ∈ G).

We say that a policy σ ∈ Σ is g-greedy if r(x, σ(x)) + g(x, σ(x)) = Mg(x) for all
x ∈ X. Let g∗ be the solution to (17). We will show that the value function is
v∗(x) = supa∈Γ(x){r(x, a) + g∗(x, a)} for all x ∈ X, and a policy σ ∈ Σ is optimal if
and only if σ is g∗-greedy.
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Define expected value Bellman operator R on G by

Rg(x, a) := Ex,a

[
β(x, a,X ′) sup

a′∈Γ(X′)

{rX ′, a′) + g(X ′, a′)}

]
((x, a) ∈ G, g ∈ G).

The action-value function iteration (AFI) is the iteration {gt}t⩾0 ⊂ G such that
gt+1 = Rgt for all t ∈ N0 with g0 ∈ G.

Lemma 6.1. If M is regular and Assumption 6.1 hold, and ḡ is a fixed point of
R, then v∗ = Mḡ, ḡ = Ev∗, and an optimal policy exists. Moreover, the following
statements are equivalent.

(a) a policy σ ∈ Σ is optimal,

(b) σ is ḡ-greedy, and

(c) σ is v∗-greedy.

Theorem 6.1. If M is regular and Assumption 6.1 holds, then the following state-
ments are true.

(a) v∗ and vσ are well-defined for all σ ∈ Σ,

(b) R is eventually contracting on (G, ∥ · ∥κ) and T is eventually contracting on
(V , ∥ · ∥),

(c) R admits a unique fixed point g∗ in G and T admits a unique fixed point v∗ in
V,

(d) v∗ =Mg∗ ∈ V and g∗ = Ev∗ ∈ G,

(e) VFI converges to v∗, AFI converges to g∗,

(f) at least one optimal policy exists, and

(g) a feasible policy is optimal if and only if it is g∗-greedy if and only it is v∗-
greedy.

6.2. Application in Optimal Savings. An agent solves an optimal savings problem
with borrowing constraint:

supE
∞∑
t=0

t−1∏
i=0

βiu(ct)

s.t. 0 ⩽ ct ⩽ wt

wt+1 = Rt+1(wt − ct) + yt+1

(w0, y0) given.

(18)
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Here βt ∈ (0,∞) is the discount factor, u : R+ → R ∪ {−∞,∞} is a utility function,
ct denotes consumption, wt ⩾ 0 denotes wealth, yt ⩾ 0 denotes non-financial income,
and Rt denotes the gross rate of return on financial income. Assume that asset return,
income, and discount factors satisfy

Rt = R(εt), yt = y(zt, εt), and βt = β(zt, zt+1)

where β is strictly positive, bounded and continuous, zt is a Markov process with
state space Z and εt is an IID shock that could be vector-valued. We first note that
Condition 6.1 is satisfied. The Bellman equation is

v(w, z) = sup
0⩽c⩽w

{u(c) +Ez[β(z, Z ′)v(R(ε′)(w − c) + y(Z ′, ε′), Z ′)]}

To this end, the state is x = (w, z) ∈ R+ × Z and the action is a = c ∈ Γ(x) = [0, w].
Suppose that u is u.s.c., increasing, infz Eu(y(Z ′, ε′)) > −∞, and there exist p > 0

and q > 1 such that

u(c) ⩽ pc+ q for all c > 0.

Define the weighting function by κ(x) = pw + q for all x = (w, z) and set d = 1 for
Assumption 6.1. To ensure Assumption 6.1, assume

sup
z
Ezβ(z, Z

′)y(Z ′, ε′) <∞, and ER(ε′) > 1, (19)

In addition, assume that there is m ∈ N such that

sup
z∈Z

Ezβ0β1β2 · · · βm−1(ER(ε
′))m < 1.

This assumption is the eventual discounting for Assumption 6.1 (b). Define operator
L by Lh(x) := Ezβ(z, Z ′)h(X ′)ER(ε′) for all x ∈ X.

Lemma 6.2. If M follows (18) and all the above corresponding assumptions hold,
then there is large enough q > 1 such that κ(x) = pw + q and

Ex,aβ(x, a,X
′)κ(X ′)Ln1(x′) ⩽ κ(x)Ln+1

1(x)

for all x ∈ X and all n ∈ {1, . . . ,m−1}. Moreover, Assumption 6.1 (a) and (c) hold.

By Lemma 6.2, it remains to show ρ(L) < 1 to ensure Assumption 6.1 (b). Since
supz∈ZEzβ0β1β2 · · · βm−1(ER(ε

′))m < 1 for some m ∈ N, we have ∥Lm1∥ < 1 and
then ρ(L) < 1. Therefore, Assumption 6.1 is satisfied, and then all conclusions of
Theorem 6.1 hold.
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7. Extension: Risk-Sensitive Preferences

We study the risk-sensitive preference models with state-action-dependent discounting
in this section, where the agent is risk-averse in future utility and future consumption.
Let an MDP satisfy the following regular conditions.

Condition 7.1.

(i) (x, a) 7→ r(x, a) is u.s.c.,

(ii) β is bounded and strictly positive,

(iii) Γ is nonempty, compact-valued, and continuous,

(iv) (x, a) 7→ (−β(x, a)/θ) ln
∫
exp(−θh(y))P (x, a, dy) is u.s.c. for any h ∈ cbX,

Let θ > 0 be the agents’ risk-sensitive coefficient. For any feasible policy σ ∈ Σ and
Borel measurable function v : X → R ∪ {−∞}, let

Tσv(x) := r(x, σ(x))− β(x, σ(x))

θ
lnEσxe

−θv(X′) (x ∈ X). (20)

The σ-value function is defined by

vσ(x) = lim sup
x→∞

T nσ r̄(x) (x ∈ X).

The associated Bellman equation is

v(x) = sup
a∈Γ(x)

{
r(x, a)− β(x, a)

θ
lnEx,ae

−θv(X′)

}
(x ∈ X). (21)

Suppose that the state process evolves following

xt+1 = f(xt, at, εt+1), (22)

where f is Borel measurable, and {εt} is an IID process taking values in Rm. For
each t, let εt = (ε1t, . . . , εmt).

Assumption 7.1.

(i) r : G → R and β : G → R are increasing in x,

(ii) rσ and βσ are increasing for any σ ∈ Σ

(iii) f(x, a, ε′) is increasing in (x, ε′), and f(x, σ(x), ε′) is increasing in (x, ε′) for
any σ ∈ Σ,

(iv) Γ(x1) ⊂ Γ(x2) if x1 ⩽ x2,
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(v) ε1t, . . . , εmt are independent for each t.

Let g(x, a) := −β(x, a)/θ logEx,a exp(−θv(X ′)) for all (x, a) ∈ G. Let G be the u.s.c.
functions g on G such that ∥g∥ < ∞ and g is increasing in X. Similar to (17), the
transformed Bellman equation is

g(x, a) = −β(x, a)
θ

lnEx,a exp

(
−θ sup

a′∈Γ(x′)
{r(X ′, a′) + g(X ′, a′)}

)
. (23)

for (x, a) ∈ G and g ∈ G. Define the risk-sensitive expected value Bellman operator R
by letting Rg(x, a) be the right-hand side of (23) for any g ∈ G and (x, a) ∈ G.

Assumption 7.2. r̄ is bounded above and r̂ is bounded below, where r̄ is defined by
(16) and r̂ is defined by

r̂(x, a) := −1

θ
lnEx,a exp(−θr̄(X ′)) ((x, a) ∈ G).

Define β̄(x) := supa∈Γ(x) β(x, a) for all x ∈ X. Suppose that there exists an ℓ : X2 →
R+ such that x 7→ ℓ(x,B) is a measurable function for all B ∈ B(X), B 7→ ℓ(x,B) is
a measure on X, and L : mbX → mbX is defined by

Lh(x) :=

∫
ℓ(x, dx′)h(x′)

for x ∈ X and h ∈ mbX.

Assumption 7.3. ρ(L) < 1, and
∫
X
h(x′)β̄(x)P (x, a, dx′) ⩽ Lh(x) for all (x, a) ∈ G

and h ∈ mbX+.

Lemma 7.1. If Condition 7.1 and , then RG ⊂ G.

Proof. Let Condition 7.1 and Assumption 7.2 hold. Let g ∈ G. We first show that
∥Rg∥ <∞. Since g ⩾ −∥g∥, we have

Rg(x, a) ⩾ −β(x, a)
θ

lnEx,a exp

(
−θ sup

a′∈Γ(X′)

{r(X ′, a′)− ∥g∥}

)

= −β(x, a)
θ

lnEx,a exp (−θ(r̄(X ′)− ∥g∥)) = β(x, a)(r̂(x, a)− ∥g∥).

Hence, since r̂ is bounded below, Rg is also bounded below. Similarly, we can show
that Rg(x, a) ⩽ β(x, a)(r̂(x, a) + ∥g∥) for all (x, a) ∈ G. Since β is bounded and r̄ is
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bounded above, r̂ is bounded above and then Rg is bounded above. Therefore, we
have ∥Rg∥ <∞.

Next, since g and r are u.s.c., and Γ is compact-valued and u.s.c., the map x 7→
h(x) := supa∈Γ(x){r(x, a) + g(x, a)} is u.s.c. by the Maximum theorem. Now, note
that if x1 ⩽ x2 in X, then x′1 = f(x1, a, ε

′) ⩽ f(x2, a, ε
′) = x′2 and then Γ(x′1) ⊂ Γ(x′2).

Since r and g are increasing in x, we have

h(x′1) = sup
a′∈Γ(x′1)

{r(x′1, a′) + g(x′1, a
′)} ⩽ sup

a′∈Γ(x′2)
{r(x′2, a′) + g(x′2, a

′) = h(x′2).

Therefore, we have −(1/θ) lnEx1,a exp(−θh(x′1)) ⩽ −(1/θ) lnEx2,a exp(−θh(x′2)). Since
in addition β is increasing in x, we see that Rg is increasing in x. We conclude that
RG ⊂ G. □

Lemma 7.2. If Condition 7.1, Assumption 7.1, 7.2, and 7.3 hold, then R is eventu-
ally contracting on (G, ∥ · ∥) and has a unique fixed point in G.

Proof. Let Condition 7.1, Assumption 7.1, 7.2, and 7.3 hold. We show that there is
an n ∈ N such that Rn satisfies Blackwell’s condition. Let g ∈ G and K ⩾ 0. Fix
(x, a) ∈ G. Observe that

R(g +K)(x, a) =
−β(x, a)

θ
lnEx,a exp

(
−θ sup

a′∈Γ(X′)

{r(X ′, a′) + g(X ′, a′) +K}

)
= Rg(x, a) + β(x, a)K ⩽ Rg(x, a) +KL1(x).

Define the function φ(t) = −1/θ lnEx,a exp(−θt) for random variable t = t(X ′). Since
φ is monotonically increasing, iteration implies

R2(g +K)(x, a) = β(x, a)φ

(
sup

a′∈Γ(X′)

{r(X ′, a′) +R(g +K)(X ′, a′)}

)

= β(x, a)φ

(
sup

a′∈Γ(X′)

{r(X ′, a′) +Rg(X ′, a′) + β(X ′, a′)K}

)

⩽ β(x, a)φ

(
sup

a′∈Γ(X′)

{r(X ′, a′) +Rg(X ′, a′)}+K sup
a′∈Γ(X′)

{β(X ′, a′)}

)
.

Let X = supa′∈Γ(X′){r(X ′, a′) + Rg(X ′, a′)} and Y = K supa′∈Γ(X′){β(X ′, a′)}. Since
Rg(x, a), r(x, a), β(x, a), and Γ(x) are increasing in x, and x′ = f(x, a, ε′) is increasing
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in x and ε′ for independent ε′, we have Cov(e−θX , e−θY |(x, a)) ⩾ 0. Therefore, since
Ex,ae

−θXe−θY ⩾ Ex,ae−θXEx,ae−θY , we have19

φ(X + Y ) =
−1

θ
lnEx,ae

−θX−θY

⩽
−1

θ
ln
(
Ex,ae

−θX
Ex,ae

−θY ) = φ(X) + φ(Y ).

We then have

R2(g +K)(x, a)

⩽ β(x, a)φ

(
sup

a′∈Γ(X′)

{r(X ′, a′) +Rg(X ′, a′)}

)
+ β(x, a)φ

(
K sup

a′∈Γ(X′)

{β(X ′, a′)}

)

= R2g(x, a) + β(x, a)φ

(
K sup

a′∈Γ(X′)

{β(X ′, a′)}

)
.

Now, since t 7→ exp(−θt) is convex, Jensen inequality implies

φ(Y ) =
−1

θ
lnEx,ae

−θY ⩽
−1

θ
ln e−θEx,aY = Ex,aY.

Therefore, we obtain

R2(g +K)(x, a) ⩽ R2g(x, a) +KEx,aβ(x, a) sup
a′∈Γ(X′)

β(X ′, a′)

⩽ R2g(x, a) +KLβ̄(x),

where L and β̄ are defined in Assumption 7.3. With the same argument, the induction
shows that Rn(g +K)(x, a) ⩽ Rng(x, a) +KLn−1β̄(x) for all n ∈ N. Since ρ(L) < 1

implies that there is m ∈ N such that ∥Lm−1β̄∥ < 1, we have

Rm(g +K) ⩽ Rmg +K∥Lm−1β̄∥.

Hence, Rm satisfies the Blackwell’s condition and is a contraction map. Then, since G
is a Banach space, R admits a unique fixed point in G by the generalized Contracting
Mapping theorem. □

Lemma 7.3. If Condition 7.1, Assumption 7.1, 7.2, and 7.3 hold, then for all con-
stant c ∈ R we have vσ(x) = lim supn→∞ T nσ r̄(x) = lim supn→∞ T nσ (r̄ + c)(x) for all
x ∈ X and σ ∈ Σ.

19See also Lemma 3 of Bäuerle and Jaśkiewicz (2018).
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Proof. Let Condition 7.1, Assumption 7.1, 7.2, and 7.3 hold. Fix σ ∈ Σ and constant
K ⩾ 0. Since r̄ + K ⩾ r̄, the monotonicity of Tσ implies lim supn→∞ T nσ (r̄ + K) ⩾

lim supn→∞ T nσ r̄. Next, similar to the iteration in Lemma 7.2, we have, for all x ∈ X,

Tσ(r̄ +K)(x) = rσ(x)−
βσ(x)

θ
lnEσxe

−θ(r̄+K)(X′)

= rσ(x)−
βσ(x)

θ
ln e−θKEσxe

−θr̄(X′)

= rσ(x)−
βσ(x)

θ
lnEσxe

−θr̄(X′) + βσ(x)K = Tσr̄(x) + βσ(x)K,

where rσ(x) = r(x, σ(x)) and βσ(x) = β(x, σ(x)) for all x ∈ X. Since rσ, βσ, x′ =
f(x, σ(x), ε′) are increasing in x, we see that Tσr̄(x) is increasing in x. Then, it follows
from the argument in Lemma 7.2 and Assumption 7.1 that Eσxe−θTσ r̄(X

′)e−θβσ(X
′)K ⩾

E
σ
xe

−θTσ r̄(X′)
E
σ
xe

−θβσ(X′)K , so iteration yields that for all x ∈ X

T 2
σ (r̄ +K)(x) = rσ(x)−

βσ(x)

θ
lnEσxe

−θTσ(r̄+K)(X′)

= rσ(x)−
βσ(x)

θ
lnEσxe

−θ(Tσ r̄(X′)+βσ(X′)K)

= rσ(x)−
βσ(x)

θ
lnEσxe

−θTσ r̄(X′)e−θβσ(X
′)K

⩽ rσ(x)−
βσ(x)

θ
lnEσxe

−θTσ r̄(X′)
E
σ
xe

−θβσ(X′)K

= T 2
σ r̄(x)−

βσ(x)

θ
lnEσxe

−θβσ(X′)K

⩽ T 2
σ r̄(x) +KEσxβσ(x)βσ(X

′)

⩽ T 2
σ r̄(x) +KLβ̄(x)

where the second inequality follows from Jensen inequality as iteration in Lemma 7.2,
and the last inequality follows from Assumption 7.3. Then, using the same induction,
we have

T nσ (r̄ +K)(x) ⩽ T nσ r̄(x) +KLn−1β̄(x).

Hence, since ρ(L) < 1 by Assumption 7.3, there exists m ∈ N such that ∥Lmβ̄∥ < 1.
Then, we have lim supn→∞ Lnβ̄(x) ⩽ lim supn→∞ ∥Lnβ̄∥ → 0 for all x ∈ X. Therefore,
we have lim supn→∞ T nσ (r̄+K)(x) ⩽ lim supn→∞ T nσ r̄(x) for all x ∈ X. Then, we have
lim supn→∞ T nσ (r̄ +K)(x) = lim supn→∞ T nσ r̄(x) for all x ∈ X when K ⩾ 0. Similarly,
we can show the statement whenK < 0, where the above inequalities are reversed. □
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If Assumption 7.1, 7.2, and 7.3 are satisfied, the optimality results follow from the
following theorem.

Theorem 7.1. If Condition 7.1, Assumption 7.1, 7.2, and 7.3 hold, then the following
statements are true.

(a) RG ⊂ G and R is eventually contracting on (G, ∥ · ∥),
(b) R admits a unique fixed point g∗ in G,

(c) v∗ is well defined and

v∗(x) = sup
a∈Γ(x)

{r(x, a) + g∗(x, a)} g∗(x, a) = −β(x, a)
θ

logEx,ae
−θv∗(X′),

(d) AFI converges to g∗,

(e) at least one optimal policy exists, and

(f) a feasible policy is optimal if and only if it is g∗-greedy.

Appendix A. Appendix

We quote some useful theorems in this section, including the generalized Contraction
Mapping Theorem, the Maximum Theorem, and Gelfand’s formula.

Theorem A.1 (generalized Contraction Mapping Theorem). If F is a self-map in
a metric space X and Fm is contractive for some m ∈ N, then F has a unique fixed
point, which is the limit of every sequence {F kx} for arbitrary x ∈ X.

See theorem 4 of Cheney (2001) for the proof of the following contraction mapping
theorem. Let X and Y be topological spaces. In the following theorem, given a
correspondence φ : X → Y , denote Gr(φ) := {(x, y) : x ∈ X, y ∈ φ(x)}.

Theorem A.2 (Berge Maximum Theorem). Let φ : X → Y be a continuous corre-
spondence between topological spaces with nonempty compact values. Suppose f : Gr(φ) →
R is continuous. Define the value function m : X → R by

m(x) := max
y∈φ(x)

f(x, y),

and the correspondence µ : X → Y of maximizers by

µ(x) := {y ∈ φ(x) : f(x, y) = m(x)}.

Then:
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(a) The value function m is continuous.

(b) The argmax correspondence µ has nonempty compact values.

(c) If either f has a continuous extension to all X × Y or Y is Hausdorff, then
the argmax correspondence µ is upper semicontinuous.

See Chapter 17 of Aliprantis and Border (2006) and Hernández-Lerma and Lasserre
(2012a) for the detail of the Maximum theorem.

Let E be a Banach space. A closed convex set K ⊂ E is called a cone if x ∈ K

implies tx ∈ K for t ⩾ 0, and x,−x ∈ K implies x = θ, where θ denotes the zero
element of E. A cone K is solid if it has an interior point; it is normal if θ ⪯ x ⪯ y

implies ∥x∥ ⩽ M∥y∥ for x, y ∈ K, where ⪯ denotes partial order on E, and M is
a constant.20 The cone of non-negative functions in mbX or cbX is both solid and
normal.

Theorem A.3 (Gelfand’s Formula). Let A be a positive operator in a space E with a
cone K. If the cone K is solid and normal, and f is an interior element of K, then

ρ(A) = lim
n→∞

∥Anf∥1/n.

See Chapter 9 of Krasnosel’skii et al. (2012) for the proof of Gelfand’s formula.

A.1. Proofs in Section 2.

Proof of Lemma 2.1. Let Condition 2.1 hold. Clearly, since σ ∈ Σ is measurable,
Condition 2.1 implies that Tσ is a self-map on mbX. We next show that T is a self-
map on cbX. Fix v ∈ cbX. Since (x, a) 7→ B(x, a, v) is bounded and continuous on G,
and Γ is continuous and compact-valued, it follows from the (measurable) Maximum
theorem that x 7→ supa∈Γ(x)B(x, a, v) = Tv(x) is continuous and the correspondence
τ : X → A defined by

τ(x) = argmax
a∈Γ(x)

B(x, a, v)

is nonempty, u.s.c, and compact-valued and admits a Borel measurable selector σ
satisfying σ(x) ∈ τ(x) for all x ∈ X. Then, σ is a Borel measurable v-greedy policy.
Since Tv(x) = B(x, a, v) for a ∈ τ(x), Tv is bounded. Therefore, Tv is a self-map on
cbX. □

20The definition of normal cone is equivalent to that there exists δ > 0 such that ∥x+ y∥ ⩾ δ for
x, y ∈ K and ∥x∥ = ∥y∥ = 1.
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Proof of Lemma 2.2. Let R be regular. Fix σ ∈ Σ and let the linear operator Lσ
be defined by (4). It follows from Theorem 1.5.5 of Bühler and Salamon (2018) that
ρ(Lσ) := limn→∞ ∥Lnσ∥1/n always exists and is bounded above by ∥Lσ∥. Applying
Gelfand’s formula, since (i) Lσ is a positive linear operator on mbX, (ii) the positive
cone in mbX is solid and normal under the pointwise partial order, and (iii) 1 lies
interior to the positive cone in mbX, we obtain

ρ(Lσ) = lim
n→∞

∥Lnσ1∥1/n = lim
n→∞

{
sup
x

|Lnσ1(x)|
}1/n

= lim
n→∞

(dσn)
1/n. (24)

To show (a), suppose ρ(Lσ) < 1. Then, (24) implies that there is an nσ ∈ N such
that dσnσ

< 1. Conversely, suppose that dσnσ
< 1 for some nσ ∈ N. Denote ℓσ(x, dx′) =

k(x, σ(x), dx′). Since any n ∈ N can be written uniquely as n = knσ + i for some
k, i ∈ N0 with i < nσ, we have that, for sufficiently large n,

dσn = sup
x
Lnσ1(x) = sup

x
Lknσ
σ Ln−knσ

σ 1(x)

= sup
x

∫
X

ℓknσ
σ (x, dx′)

∫
X

1(x′′)ℓn−knσ
σ (x′, dx′′)

⩽ sup
x

∫
X

ℓknσ
σ (x, dx′)

(
sup
x′

∫
X

ℓn−knσ
σ (x′, dx′′)

)
= dσknσ

dσn−knσ

(25)

where the second inequality follows from the same argument for the first inequality.
Then, we have

(dσn)
1/n = (dσknσ

dσn−knσ
)1/n ⩽ (dσnσ

)k/n(dσi )
1/n ⩽ (dσnσ

)k/n(M)1/n.

Since k/n → 1/nσ as n → ∞, the right-hand side converges to (dσnσ
)1/nσ < 1 as

n → ∞. Hence, ρ(Lσ) < 1. Since σ is arbitrarily chosen, the statements hold for all
σ ∈ Σ. Part (c) follows from Gelfand’s formula with the fact Lnσ1 ⩽ L̂n1 for n ∈ N
by iteration. □

Lemma A.1. If R is regular, and ρ(Lσ) < 1 for all σ ∈ Σ, then Tσ is eventually
contracting, globally stable on mbX, and has a unique fixed point vσ ∈ mbX for all
σ ∈ Σ. Moreover, if σ ∈ Σ is continuous, then vσ ∈ cbX.

Proof of Lemma A.1. Suppose that R is regular and ρ(Lσ) < 1 for all σ ∈ Σ. Fix
σ ∈ Σ. Let Lσ be the operator defined by (4). Let v, w ∈ mbX. Then, we have

|Tσv(x)− Tσw(x)| ⩽ Lσ|v − w|(x) (x ∈ X).
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Since Lσ is order-preserving, iteration implies that |T nσ v − T nσw| ⩽ Lnσ|v − w| for all
n ∈ N. Since ρ(Lσ) < 1, Lemma 2.2 implies that there is an nσ ∈ N such that
dσnσ

< 1 and iteration implies

Lnσ
σ h(x) ⩽ dσnσ

∥h∥ (h ∈ mbX.)

Therefore, we have

|T nσ
σ v − T nσ

σ w| ⩽ Lnσ
σ |v − w| ⩽ dσnσ

∥v − w∥.

Taking supremum over X on the left, we have ∥T nσ
σ v − T nσ

σ w∥ ⩽ dσnσ
∥v − w∥. We

conclude that T nσ
σ is a contracting map with modulus dσnσ

. Finally, the generalized
Contraction Mapping theorem shows that Tσ is globally stable and has a unique fixed
point vσ ∈ mbX. If σ ∈ Σ is continuous, then Tσ is a self-map on cbX. Then, Tσ is
globally stable on both cbX and mbX. Since cbX ⊂ mbX and vσ is unique in both mbX
and cbX, we have vσ ∈ cbX. □

Lemma A.2. If R is regular and Assumption 2.2 holds, then ρ(Lσ) < 1 and Tσ has
a unique fixed point and is eventually contracting and globally stable on mbX for all
σ ∈ Σ.

Proof of Lemma A.2. Suppose that R is regular and Assumption 2.2 holds. Fix σ ∈
Σ. By definition, we have Lσ1 ⩽ L̂1, which implies L2

σ1 ⩽ L̂Lσ1 ⩽ L̂2
1. Iteration

yields Lnσ1 ⩽ L̂n1 for all n ∈ N. Since ρ(L̂) < 1, there is an m ∈ N such that
∥Lmσ 1∥ ⩽ ∥L̂m1∥ < 1. This implies ρ(Lσ) < 1. Fix v, v′ ∈ mbX. Since Tσv(x) −
Tσv

′(x) ⩽ Lσ(v − v′)(x) for x ∈ X, we have |Tσ(x)v − Tσv
′(x)| ⩽ Lσ|v − v′|(x) for

all x ∈ X. Iteration implies |Tmσ v − Tmσ v
′| ⩽ Lmσ |v − v′| ⩽ ∥v − v′∥Lmσ 1. Taking

supremum, we have ∥Tmσ v − Tmσ v
′∥ ⩽ ∥v − v′∥∥Lmσ 1∥. Then, Tmσ is contracting, so

the generalized Contraction Theorem concludes the statement. □

Lemma A.3. If R is regular and Assumption 2.2 holds, then T has a unique fixed
point and is eventually contracting and globally stable on cbX.
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Proof of Lemma A.3. Suppose that R is regular and Assumption 2.2 holds. Then, T
is a self-map on cbX. Fix v, v′ ∈ cbX. We have

|Tv(x)− Tv′(x)| ⩽ sup
σ

|Tσv(x)− Tσv
′(x)|

⩽ sup
σ

|Lσ(v − v′)(x)|

⩽ sup
σ
Lσ|v − v′|(x) = L̂|v − v′|(x)

for all x ∈ X. Then, iteration yields

|T nv(x)− T nv′(x)| ⩽ L̂n|v − v′|(x)

for all x ∈ X, which implies ∥T nv−T nv′∥ ⩽ ∥L̂n1∥∥v−v′∥ Since ρ(L̂) < 1, there exist
n ∈ N such that ∥L̂n1∥ < 1. Therefore, L̂n is contracting, and then the generalized
Contraction Mapping shows that L̂ has a unique fixed point and globally stable. □

Lemma A.4. If R is regular, and Assumption 2.2 holds, then T is contracting on
(cbX, ∥ · ∥w), where w :=

∑∞
n=0 L̂

n
1.

Proof of Lemma A.4. Suppose that R is regular, and Assumption 2.2 holds. Then,
ρ(L̂) < 1. Let {fn}n⩾0 be a monotonically increasing sequence in mbX such that
vn ↑ v ∈ mbX pointwise. Then, since L̂ and Lσ preserve orders, the Dominated
Convergence Theorem implies that

lim
n→∞

L̂vn(x) = sup
n

sup
σ∈Σ

Lσvn(x)

= sup
σ∈Σ

sup
n

∫
X

vn(x)k(x, σ(x), dx
′)

= sup
σ∈Σ

∫
X

sup
n
vn(x)k(x, σ(x), dx

′)

= sup
n

∫
X

v(x)k(x, σ(x), dx′) = L̂v(x)

for x ∈ X. Therefore, Assumption 8 of Bloise et al. (2024) holds. It then follows
from Claim 6 of Bloise et al. (2024) that there are λ ∈ (0, 1) and everywhere positive
w ∈ mbX such that L̂w ⩽ λw. Note that we can construct w by w =

∑∞
n=0 L̂

n
1.21

21See the proof of Claim 6, Bloise et al. (2024).
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Fix v, v′ ∈ cbX. Then, we have

|Tv(x)− Tv′(x)| = | sup
σ
Tσv(x)− sup

σ
Tσv

′(x)|

⩽ sup
σ

|Tσv(x)− Tσv
′(x)|

⩽ sup
σ
Lσ(|v − v′|)(x) = L̂(|v − v′|)(x)

⩽ L̂(∥v − v′∥ww)(x) = ∥v − v′∥wL̂(w)(x)

⩽ ∥v − v′∥wλw(x)

for x ∈ X. Dividing w and taking supremum, it implies that ∥Tv − Tv′∥w ⩽ λ∥v −
v′∥w. □

Lemma A.5. If Assumption 2.1 holds, then there exists w ∈ R
X
+ such that T is

contractive on (RX, ∥ · ∥w) and has a unique fixed point in RX.

Proof of Lemma A.5. Let Assumption 2.1 hold. For s ∈ Σ, since ρ(Lσ) < 1, there
exist λσ < 1 and everywhere positive wσ ∈ RX

+ such that Lσwσ ⩽ ρ(Lσ)wσ. Define
T ′ : RX → R

X by T ′
σv(x) = −B(x, σ(x), v) for all x ∈ X, v ∈ RX, and σ ∈ Σ. Define

T ′ : RX → R
X by T ′v = minσ(T

′
σv) for all v ∈ RX. Then, we have T ′v = −Tv for

all v ∈ RX. Fix σ ∈ Σ and v, v′ ∈ RX. Let w(x) = minσ wσ(x) for all x ∈ X and
λ = maxσ λσ. Since Σ is finite, we have λ < 1, and the finiteness of X implies that w
is everywhere positive. We observe that

T ′
σv(x)− T ′

σv
′(x) = −B(x, σ(x), v) +B(x, σ(x), v′) ⩽ Lσ(−v + v′)(x)

⩽ Lσ(∥v − v′∥ww)(x) ⩽ ∥v − v′∥wLσwσ(x)

⩽ ∥v − v′∥wλσwσ(x) ⩽ ∥v − v′∥wλwσ(x)

for all x ∈ X. It implies that

T ′v(x) = min
σ
T ′
σv(x) ⩽ T ′

σv(x) ⩽ T ′
σv

′(x) + ∥v − v′∥wλwσ(x)

for all x ∈ X. Taking minimum on RHS over Σ, we have

T ′v(x) ⩽ T ′v′(x) + ∥v − v′∥wλw(x)

for all x ∈ X. Also, interchanging the role of v and v′ yields

T ′v′(x) ⩽ T ′v(x) + ∥v − v′∥wλw(x).
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for all x ∈ X. Hence, we have |T ′v(x)−T ′v′(x)| ⩽ ∥v−v′∥wλw(x) for x ∈ X. Dividing
w(x) and taking supremum, we have ∥T ′v − T ′v′∥w ⩽ λ∥v − v′∥w, which implies

∥Tv − Tv′∥w = ∥ − T ′v + T ′v′∥w ⩽ λ∥v − v′∥w

for all v, v′ ∈ RX. Therefore, T is contractive on (RX, ∥ · ∥w) and has a unique fixed
point in RX. □

Proposition A.1. If Assumption 2.1 holds, then HPI converges to σ∗ in finitely many
steps, OPI converges to σ∗, VTI converges to v∗, v∗ is the unique solution to Bellman
equation, the Bellman’s principle of optimality holds, and at least one optimal policy
exists.

Proof of Proposition A.1. Suppose that Assumption 2.1 holds. Then, Tσ is globally
stable for all σ ∈ Σ. Since Σ is finite, then it follows from Chapter 8 or Chapter 9 of
Sargent and Stachurski (2023) that HPI converges to σ∗ in finitely many steps, and
the other statements hold. Alternately, since Lemma A.5 implies the global stability
of T , the statements is shown by Lemma A.7, A.9, A.10, and A.12. □

Lemma A.6. If R is regular and Assumption 2.3 holds, then T is eventually con-
tracting and globally stable on cbX and has a unique fixed point v̄ ∈ cbX, and Tσ

is eventually contracting and globally stable on mbX, and have unique fixed points
vσ ∈ mbX for all σ ∈ Σ.

Proof of Lemma A.6. Let R be regular and Assumption 2.3 hold. Lemma 2.1 implies
that T is a self-map on cbX. Fix v, w ∈ cbX. Then, we have

|Tv(x)− Tw(x)| =
∣∣∣ sup

σ
Tσv(x)− sup

σ
Tσw(x)

∣∣∣
⩽ sup

σ
|Tσv(x)− Tσw(x)|

⩽ sup
σ

|B(x, σ(x), v)−B(x, σ(x), w)|

⩽ L|v − w|(x) (x ∈ X).

Hence, we obtain |Tv − Tw| ⩽ L|v − w|. Since L preserves order, iteration gives

|T nv − T nw| ⩽ Ln|v − w| ⩽ Ln1∥v − w∥ ⩽ ∥Ln1∥∥v − w∥

for n ∈ N. Taking the supremum on the left, we have ∥T nv−T nw∥ ⩽ ∥Ln1∥∥v−w∥ for
all n ∈ N. Since L is a positive linear operator, we have ρ(L) = limn→∞ ∥Ln1∥1/n by
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Theorem 9.1 of Krasnosel’skii et al. (2012) as the proof of Lemma 2.2. Since ρ(L) < 1,
there exists an m ∈ N such that ∥Lm1∥ < 1. We conclude that ∥Tmv − Tmw∥ ⩽

∥Lm1∥∥v − w∥ for all v, w ∈ cbX. Therefore, Tm is contracting, so the generalized
Contracting Mapping theorem shows that T is globally stable on X and has a unique
fixed point v̄ ∈ cbX. The proof for Tσ is similar. □

Lemma A.7. If R is regular, Tσ is globally stable on mbX for all σ ∈ Σ, and T is
globally stable on cbX, then the following statements are true.

(a) If v̄ is the unique fixed point of T on cbX, then v∗ = v̄ and there exists a
σ∗ ∈ Σ such that v∗ = vσ∗.

(b) If T has a non-continuous fixed point v̄ ∈ mbX, then v∗ < v̄ and vσ < v̄ for
all σ ∈ Σ.

Proof of Lemma A.7. Let R be regular and suppose that Tσ is globally stable on mbX
for all σ ∈ Σ, and T is globally stable on cbX. We first show (a). Fix σ ∈ Σ and
let v̄ be the unique fixed point of T on cbX. Since v̄ is the fixed point of T and
T v̄ = supσ∈Σ Tσv̄, we obtain v̄ = T v̄ ⩾ Tσv̄. Since Tσ is order-preserving, iteration
gives v̄ ⩾ Tσv̄ ⩾ · · · ⩾ T nσ v̄ for n ∈ N. In addition, since Tσ is globally stable, we
have v̄ ⩾ vσ as n→ ∞, which implies v̄ ⩾ v∗ by taking supremum over Σ.

Conversely, Lemma 2.1 implies that there exists a σ∗ ∈ Σ such that Tσ∗ v̄ = T v̄. Then,
we have Tσ∗ v̄ = v̄, whence v̄ = vσ∗ by the uniqueness of fixed point of Tσ∗ . By the
definition of v∗, we obtain v∗ ⩾ vσ∗ = v̄. We conclude that v∗ = v̄ and an optimal
policy σ∗ exists.

To show (b), assume that there is a non-continuous v̄ ∈ mbX such that T v̄ = v̄.
Toward contradiction, suppose that there is σ ∈ Σ such that vσ ⩾ v̄. Then, we have
v∗ ⩾ vσ ⩾ v̄. Moreover, since v̄ is a fixed point of T , we have v̄ = T v̄ ⩾ Tσv̄ for
any σ ∈ Σ. Iteration implies v̄ ⩾ T nσ v̄, so v̄ ⩾ vσ as n → ∞ by the global stability
of Tσ. It implies that v̄ ⩾ v∗. Then, we obtain v̄ = v∗, which is continuous by (a),
contradicting with non-continuity. Therefore, we must have vσ < v̄ for any σ ∈ Σ.
The same argument also implies v∗ < v̄. □

Lemma A.8. If Condition 2.2 holds, then the following statements are true.

(a) T and Tσ are self-maps on cbX for all σ ∈ ΣC, and
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(b) for any v ∈ cbX there exists a continuous v-greedy policy.

Proof of Lemma A.8. Let R be regular and Assumption 2.2 holds. Then, if σ ∈ Σ is
continuous and v ∈ cbX, then x 7→ Tσ(x) = B(x, σ(x), v) is continuous. Hence, Tσ is
a self-map on cbX. Since Γ is convex-valued and compact-valued, and a 7→ B(x, a, v)

is strictly quasi-concave for any x ∈ X and v ∈ cbX, it follows from the Maximum
theorem that the Tv is continuous and then T is a self-map on cbX. Moreover, for any
v ∈ cbX, the maximizer correspondence x 7→ argmaxa∈Γ(x)B(x, a, v) is single-valued
and continuous, whence a continuous v-greedy policy exists. □

Lemma A.9 (Bellman’s Principle of Optimality). Suppose that R is regular and Tσ
is globally stable for all σ ∈ Σ. If v∗ is a fixed point to T , then Bellman’s principle of
optimality holds.

Proof of Lemma A.9. Let all the stated assumptions hold. We want to show: σ ∈ Σ is
optimal (i.e., vσ = v∗) if and only if σ is v∗-greedy. Suppose that σ ∈ Σ is v∗-greedy:
Tσv

∗ = Tv∗. Since Tv∗ = v∗, we obtain Tσv
∗ = v∗ so that vσ = v∗. Conversely,

suppose that σ ∈ Σ is optimal: vσ = v∗. Since Tσ has a unique fixed point vσ,
we obtain v∗ = Tσv

∗. Since Tv∗ = v∗, we have Tσv
∗ = v∗ = Tv∗, so that σ is

v∗-greedy. □

Lemma A.10 (HPI). Suppose that Condition 2.2 holds, Tσ is globally stable on cbX

with fixed point vσ ∈ cbX for all σ ∈ ΣC, and T is globally stable on cbX. If v∗ ∈ cbX is
the unique fixed point of T on cbX, then {Hnvσ0}n⩾0 converges to v∗ for any σ0 ∈ ΣC,
and v∗ is the unique fixed point of H.

Proof of Lemma A.10. Let all the stated assumptions hold. Let {σk}k⩾0 ⊂ ΣC be
such that σ0 ∈ ΣC and vσk = Hvσk−1

for all k ∈ N; that is, σk ∈ ΣC satisfies
Tσkvσk−1

= Tvσk−1
. Note that for any k ⩾ 0, the continuity of σk implies that Tσk

is a self-map on cbX, vσk is continuous, and then a continuous vσk-greedy policy
σk+1 exists by Lemma A.8. By definition, Tσkvσk−1

= Tvσk−1
⩾ Tσk−1

vσk−1
= vσk−1

.
Applying Tσk on both sides repeatedly, since Tσk is order-preserving, iteration yields
T nσkvσk−1

⩾ Tσkvσk−1
⩾ Tvσk−1

⩾ vσk−1
. Taking n to infinity, the global stability of

the policy operator implies that vσk ⩾ Tvσk−1
⩾ vσk−1

for all k ⩾ 0. Since T is order-
preserving, we have Tvσk ⩾ T 2vσk−1

for all k ∈ N and then vσk ⩾ Tvσk−1
⩾ T 2vσk−2

.
Induction yields vσk ⩾ T kvσ0 for k ∈ N. Since v∗ ⩾ vσk by definition, we obtain
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v∗ ⩾ vσk ⩾ T kvσ0 . Taking k → ∞, since T is globally stable with unique fixed point
v∗, we have vσk → v∗ as k → ∞.

Next, let σ∗ be v∗ greedy policy. Since Tσ∗v∗ = Tv∗ = v∗ and Tσ∗ has a unique fixed
point vσ∗ , we have vσ∗ = v∗ and Hv∗ = vσ∗ = v∗, whence v∗ is a fixed point of H. To
see that v∗ is the unique fixed point of H, let v̄ be the fixed point of H. Then, we
have v̄ = Hv̄ = vσ where σ is v̄-greedy. It implies that T v̄ = Tvσ = Tσvσ = vσ = v̄.
Since v∗ is the unique fixed point of T by global stability, we have v̄ = v∗. □

Lemma A.11. Let Vu := {v ∈ cbX : Tv ⩾ v}. If Condition 2.2 holds, then W ,
defined by (8), is an order-preserving self-map on Vu, and we have

v ∈ Vu =⇒ Tv ⩽ Wv ⩽ Tmv.

Proof of Lemma A.11. Let Condition 2.2 hold. Then, T and Tσ are order-preserving
self-maps on cbX for all σ ∈ ΣC , and v-greedy continuous policy exists for all v ∈ cbX

by Lemma A.8. Fix any v ∈ Vu and let σ ∈ ΣC be such that Tσv = Tv. Since
Tσu ⩽ Tu for any u ∈ cbX, T and Tσ are order-preserving and v ⩽ Tv, we see that
Wv ∈ Vu:

Wv = TσT
m−1
σ v ⩽ TTm−1

σ v ⩽ TTm−1
σ Tv = TTm−1

σ Tσv = TWv.

Then, W is a self-map on Vu. Also since Tmσ is order-preserving, W is order-preserving.
Next, regarding the first inequality, since Tσ is order-preserving, v ⩽ Tv, and Tσv =

Tv, we have
Tm−1
σ v ⩽ Tm−1

σ Tv = Tm−1
σ Tσv = Wv.

Repeating the same iteration, we have Tm−j
σ v ⩽ Wv for j < m. In particular, for

j = m−1, we have Tσv ⩽ Wv. Since Tσv = Tv, we obtain Tv ⩽ Wv. For the second
inequality, since Tσv ⩽ Tv by definition, and T and Tσ are order-preserving, we have
Wv = Tmσ v ⩽ Tmv. □

Lemma A.12 (OPI). If Condition 2.2 holds and T is globally stable on cbX with
unique fixed point v∗ ∈ cbX, then the OPI iteration {vk} converges to v∗ with v0 = vσ

for some σ ∈ ΣC.

Proof of Lemma A.12. Let all the stated assumptions hold. Pick σ ∈ ΣC and let
v0 = vσ. Let {vk}k⩾0 be the OPI iteration. First, claim that

T kv0 ⩽ W kv0 ⩽ T kmv0 (k ∈ N).
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Since v0 = Tσv0 ⩽ Tv0, v0 ∈ Vu. Hence, it follows from Lemma A.11 that the claim
holds for k = 1. Suppose that the claim holds for some k ∈ N. Since all operators
are order-preserving and self-map on Vu, Lemma A.11 with W kv0, T

kmv0 ∈ Vu implies
the iteration:

T k+1v0 ⩽ TW kv0 ⩽ WW kv0 ⩽ WT kmv0 ⩽ T (k+1)mv0.

Therefore, the claim holds for all k ∈ N by induction. Now, since T kv → v∗ as k → ∞,
the above claim implies that W kv0 → v∗. Since OPI iteration follows vk = W kv0, we
conclude that {vk} converges to v∗. □

Proof of Theorem 2.1. Let R be regular. If Assumption 2.1 holds, then Lemma A.1
implies (a), and Proposition A.1 shows the other statements. If Assumption 2.2
holds, then Lemma A.2 implies (a), and Lemma A.3 implies that T is globally stable.
Moreover, Lemma A.4 implies (b). If Assumption 2.3 holds, then Lemma A.6 shows
that T and Tσ are eventually contracting on cbX and mbX, respectively, for all σ ∈ Σ.
Suppose that either Assumption 2.2, or 2.3 holds. Part (c), (d), and (g) follow from
Lemma A.7 with global stability of T . Part (f) follows from Lemma A.9 with (c).
Part (α) follows from Lemma A.10 with (c). Part (β) follows from Lemma A.12 with
(c). □

Proof of Proposition 2.1. Let the stated assumptions hold. Fix v, w ∈ U ⊂ mbX.
Then, by the properties of T , we have

T v = T (v + w − w) ⩽ T (w + |v − w|) ⩽ T w +G|v − w|.

Exchanging the roles of v and w, we obtain |T v − T w| ⩽ G|v − w|. Then, by the
same proof in Lemma A.6, T is eventually contracting on U . □

Lemma A.13. If Condition 2.2 holds, Tσ is globally stable on mbX for all σ ∈ Σ,
and T is globally stable on cbX, then v∗ = supσ∈ΣC

vσ and Tv = supσ∈ΣC
Tσv for all

v ∈ cbX.

Proof of Lemma A.13. Let all the assumptions hold. Fix v ∈ cbX. By Lemma
A.8, there is a continuous σ′ ∈ Σ such that Tv = Tσ′v, which implies that Tv =

supσ∈Σ Tσv = Tσ′v ⩽ supσ∈ΣC
Tσv. Moreover, since Lemma A.7 implies v∗ = v̄ ∈ cbX,

we have supσ∈Σ vσ = v∗ = vσ∗ ⩽ supσ∈ΣC
vσ, where σ∗ is a continuous v∗-greedy

policy. □
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A.2. Proofs in Section 3.

Proof of Lemma 3.1. Let M be an MDP satisfying Condition 3.1. Since (x, a) 7→
B(x, a, v) = r(x, a) +

∫
X
v(x′)β(x, a, x′)P (x, a, dx′) is continuous and bounded on G

for v ∈ cbX by assumption, Condition 2.1 holds. Clearly, the value aggregator B
satisfies monotonicity condition (2). Therefore, M is regular. Lemma 2.1 concludes
the remaining statements. □

Lemma A.14. If Condition 3.2 holds, then the following statements are true.

(a) T and Tσ are self-maps on cbX, and

(b) for any v ∈ cbX there exists a continuous v-greedy policy.

Proof of Lemma A.14. The statements follow from Lemma A.8 that Condition 3.2
holds implies Condition 2.2. □

Proof of Lemma 3.2. Let M be regular and Assumption 3.3 hold. Then, we have
Lσ1 ⩽ L1 for all σ ∈ Σ. Pick σ ∈ Σ. Since Lσ and L are order-preserving, iteration
implies Lnσ1 ⩽ Ln1 for all n ∈ N. Let {Xt} be a Pσ-Markov process with X0 = x and
βt = β(Xt, σ(Xt), Xt+1) for all t ∈ N0. Then, iteration implies

Lnσ1(x) = E
σ
x{β0β1 · · · βn−1} ⩽ Ln1(x) ⩽ ∥Ln1∥

for x ∈ X. Finally, taking supremum over X, we have dσn = ∥Lnσ1∥ ⩽ ∥Ln1∥ for all
n ∈ N. Since limn→∞ ∥Ln1∥1/n = ρ(L) < 1, there exists a n ∈ N satisfying ∥Ln1∥ < 1

and then dσn < 1 for all σ ∈ Σ. Then, we have

ρ(Lσ) = lim
n→∞

∥Lnσ1∥1/n ⩽ lim
n→∞

∥Ln1∥1/n = ρ(L) < 1.

Now, since L̂1 = supσ Lσ1 ⩽ L1, iteration yields L̂n1 ⩽ Ln1 for n ∈ N. Then, the
same argument implies ρ(L̂) ⩽ ρ(L) < 1. □

Lemma A.15. If M is regular and Assumption 3.2 holds, then Tσ is eventually
contracting and globally stable on mbX, and vσ defined by (10) is the unique fixed
point of Tσ in mbX for any σ ∈ Σ.

Proof of Lemma A.15. Suppose that M is regular and Assumption 3.2 holds. Then,
Assumption 2.2 holds. Fix σ ∈ Σ. Then, it follows from Lemma A.2 and Lemma 2.2
that Tσ is globally stable and eventually discounting and has a unique fixed point.
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Next, we check that vσ, defined by (10), is a fixed point of Tσ by definition. Let {Xt}t⩾0

be a stochastic process generated by Pσ with X0 = x. Let βt = β(Xt, σ(Xt), Xt+1)

for t ∈ N0. Since vs = Tσvs = T nσ vs, we have

vs(x) = rσ(x) +E
σ
xβ0vs(X1)

= rσ(x) +E
σ
xβ0[rσ(X1) +E

σ
X1
β1vs(X2)]

= · · ·

= Eσx

[
n∑
t=0

t−1∏
i=0

βirσ(Xt)

]
+Eσxβ0β1 · · · βnvs(Xn+1)

= lim
n→∞

E
σ
x

[
n∑
t=0

t−1∏
i=0

βirσ(Xt)

]
= vσ(x), (x ∈ X)

where we use

lim
n→∞

E
σ
xβ0β1 · · · βnvs(Xn+1) ⩽ lim

n→∞

(
sup
x
E
σ
xβ0β1 · · · βn∥vs∥

)
⩽ lim

n→∞,
n=knσ+i,
i<nσ ,i,k∈N

(
sup
x
E
σ
x

knσ−1∏
t=0

βtE
σ
Xknσ

knσ+i−1∏
j=knσ

βj∥vs∥
)

⩽
(
lim
k→∞

(dσnσ
)k
)
sup
i<nσ

dσi ∥vs∥ = 0.

Therefore, vs = vσ. □

Lemma A.16. If M is regular, and either Assumption 3.1, 3.2, or 3.3 holds, then Tσ
is contractive on (mbX, ∥ · ∥wσ) with modulus λσ, and T is contractive on (cbX, ∥ · ∥w)
with modulus λ, where

wσ(x) := E
σ
x

∞∑
t=0

t−1∏
i=0

βσi and λσ := sup
x∈X

wσ(x)− 1

wσ(x)

for x ∈ X and w :=
∑∞

n=0 L̂
n
1 and λ := supx∈X(w(x) − 1)/w(x). Moreover, Lσwσ ⩽

λσwσ for all σ ∈ Σ and L̂w ⩽ λw.

Proof of Lemma A.16. Let M be regular and and either Assumption 3.1, 3.2, or 3.3
holds. Then, assumptions of Theorem 2.1 hold. Hence, given any reward function
satisfying regular conditions, T is globally stable on (cbX, ∥ · ∥), and Tσ is globally
stable on (mbX, ∥ · ∥) and has a unique fixed point vσ, for all σ ∈ Σ. Fix σ ∈ Σ.
If we consider r ≡ 1, then the policy value is wσ(x) = E

σ
x

∑∞
t=0

∏t−1
i=0 β

σ
i , where
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βσt = βσ(Xt, Xt+1), given a stochastic process {Xt} generated by Pσ with X0 = x.
Since β is bounded and strictly positive, and

∏−1
i=1 β

σ
i = 1, we have wσ ≫ 1. Since

wσ is the fixed point of Tσ when r = 1, wσ is bounded. Therefore, we have

wσ(x) = 1 +

∫
wσ(x

′)βσ(x, x
′)Pσ(x, dx

′) (x ∈ X).

Rewriting this equation, we have for all x ∈ X

Lσwσ(x) =

∫
wσ(x

′)βσ(x, x
′)Pσ(x, dx

′)

= wσ(x)− 1 ⩽

(
sup
y

wσ(y)− 1

wσ(y)

)
wσ(x) =: λσwσ(x).

Since wσ is bounded and wσ ≫ 1, we obtain λσ < 1. Therefore, fixing v, v′ ∈ mbX,
we have

|Tσ(x)v − Tσv
′(x)| ⩽ Lσ|v − v′|(x) ⩽ Lσ(∥v − v′∥wσwσ)(x)

⩽ ∥v − v′∥wσλσwσ(x)

for all x ∈ X. Dividing wσ(x) and taking supremum over X, we have ∥Tσv−Tσv′∥wσ ⩽

λσ∥v−v′∥wσ , so Ts is contractive with modulus λσ. Similarly, since T is globally stable
on (cbX, ∥ · ∥), T admits a fixed point w ∈ cbX when r ≡ 1. Then, we have

w = sup
σ
(1+ Lσw) = 1+ sup

σ
Lσw = 1+ L̂w = · · · =

∞∑
n=0

L̂n1.

where the last equality follows from the iteration of w = 1 + L̂w. It implies that
λ := supx∈X(w(x)− 1)/w(x) < 1 and L̂w = w − 1 ⩽ λw. Fix v, v′ ∈ cbX. We have

|Tv − Tv′| ⩽ L̂|v − v′| ⩽ L̂(∥v − v′∥ww) ⩽ ∥v − v′∥λw,

which shows that ∥Tv − Tv′∥w ⩽ λ∥v − v′∥w for all v, v′ ∈ cbX. □

Lemma A.17. If R is regular, r(x, a) ≡ f(x) > 0 for all x ∈ X and some f ∈ cbX+

, and T has a fixed point v ∈ cbX, then ρ(L̂) < 1 and supx dn(x) < 1.

Proof of Lemma A.17. Suppose that R is regular, r ≡ f ∈ cbX+, and T has a fixed
point v ∈ cbX. Since v is the fixed point of T , we have

v = Tv = f + L̂v = f + L̂f + L̂2f = · · · =
∞∑
n=0

L̂nf.
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Since
∑∞

n=0 L̂
nf converges to v, it must be that limn→∞ L̂nf = 0. To this end, we

have ρ(L̂) = limn→∞ ∥L̂nf∥1/n < 1. Since ρ(L̂) < 1, we have limn→∞ L̂n1 = 0.
Therefore, since iteration yields dn = L̂n1 for n ∈ N, there is n ∈ N such that
supx dn(x) = ∥L̂n1∥ < 1. □

Proof of Theorem 3.1. Let M be regular. Lemma 3.1 implies that M is a regular
RDP. The first statement follows from A.17. Suppose that either Assumption 3.1, 3.2
or 3.3 holds. Lemma A.16 implies that T (resp. Tσ) is contractive on (cbX, ∥·∥w) (resp.
(mbX, ∥ · ∥wσ) with modulus λ (resp. λσ). Since Assumption 3.1 implies Assumption
2.1, Assumption 3.2 implies Assumption 2.2, Assumption 3.3 implies Assumption
2.3, and Condition 3.2 implies Condition 2.2, the remaining statements follow from
Theorem 2.1. □

A.3. Proofs in Section 4. Let σ ∈ ΣC . Let {Xσ
t }t⩾0 be a kσ-Markov process.

Suppose that {Xσ
t }t⩾0 admits a stationary distribution πσ. Let L1(πσ) be the set of

Borel measurable functions g : X → R such that

∥g∥ :=

∫
|g(x)|πσ(dx) <∞.

For f, g ∈ L1(πσ), we write f ⩾ g if f(x) ⩾ g(x) for πσ-almost all x ∈ X. We write
f ≫ g if f(x) > g(x) for πσ-almost all x ∈ X. Define Gσ to be all f ∈ L1(πσ) such
that f ≫ 0.

Proof of Lemma 4.1. The proof is identical to Lemma A.14 with the fact that r is
positive everywhere. □

Lemma A.18. If Assumption 4.1 and Condition 4.1 hold, then for all σ ∈ ΣC the
following statements are true.

(a) kσ is continuous and bounded,

(b) there exists an m ∈ N such that kmσ is everywhere positive,

(c) there exists a unique stationary density πσ for kσ on X, and

(d) πσ is everywhere positive and continuous on X

Proof of Lemma A.18. Let the stated assumptions hold. Fix σ ∈ ΣC . Since β, P
and σ are continuous, βσ and Pσ are continuous on a compact set X so that they are
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bounded. Then, kσ is continuous and bounded, which shows (a). Let {Xσ
t }t⩾0 be the

state process such that

P{Xσ
t+1 ∈ B|Xσ

t = x} =

∫
B

kσ(x, dy)

for every x ∈ X and Borel set B ⊂ X. Since Assumption 4.1 holds and β is strictly
positive, the Markov chain induced by Pσ is irreducible, which implies that the Markov
chain induced by kσ is also irreducible. Hence, there exists an m ∈ N such that kmσ is
everywhere positive, which shows (b), and then {Xσ

t } is irreducible. It then implies
that (c): there exists a unique stationary distribution πσ: Xσ

t
d
= πσ. Finally it follows

from the proof of Lemma C1 of Borovička and Stachurski (2020) that (d): πσ is
everywhere positive and continuous. □

Lemma A.19. If Assumption 4.1 and Condition 4.1 hold, then the following state-
ments are true for all σ ∈ ΣC:

(a) Lσ is a bounded linear operator on L1(πσ).

(b) Lσg is continuous for g ∈ Gσ.

(c) Lσg ⩾ 0 when g ⩾ 0 and Lσg ∈ Gσ when g ∈ Gσ.

(d) Lσ is irreducible and L2
σ is compact.

(e) ρ(Lσ) > 0 and there exists a continuous function eσ ∈ Gσ such that Lσeσ =

ρ(Lσ)eσ.

(f) Lσ is order preserving on L1(πσ).

Proof of Lemma A.19. Let Assumption 4.1 and Condition 4.1 hold. Fix σ ∈ ΣC . For
(a) and (b), since kσ is continuous and bounded by Lemma A.18, and β̄σ is bounded
and everywhere positive, the result follows from the proof in Lemma C2 of Borovička
and Stachurski (2020). For (c), the first claim is obvious, and the second follows
from that β is everywhere positive. For (d), the proof is identical to Lemma C3 of
Borovička and Stachurski (2020) with continuity of πσ and kσ from Lemma A.18.
Part (e) and (f) are identical to Lemma 8.4 of Stachurski et al. (2022a). □

Lemma A.20. If Assumption 4.1 and Condition 4.1 hold, then ∥Tσv − Tσw∥eσ ⩽

ρ(Lσ)∥v − w∥eσ for all v, w ∈ cbX+ and all σ ∈ ΣC.
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Proof of Lemma A.20. Let Assumption 4.1 and Condition 4.1 hold. Fix σ ∈ ΣC .
Lemma A.19 implies that there is eσ ∈ cbX+ such that Lσeσ = ρ(Lσ)eσ. Then, for
v, w ∈ cbX+ we have

|Tσv(x)− Tσw(x)| =
∣∣∣β̄σ(x)∫ kσ(x, dx

′)(v(x′)− w(x′))
∣∣∣

⩽ β̄σ(x)

∫
kσ(x, dx

′)|v(x′)− w(x′)|

⩽ β̄σ(x)

∫
kσ(x, dx

′)eσ(x
′) sup

x′

|v(x′)− w(x′)|
eσ(x′)

= β̄σ(x)

∫
kσ(x, dx

′)eσ(x
′)∥v − w∥eσ

= ∥v − w∥eσLσeσ(x) = ∥v − w∥eσρ(Lσ)eσ(x).

(26)

Dividing both sides with eσ(x) and taking the supremum, we have ∥Tσv − Tσw∥eσ ⩽

ρ(Lσ)∥v − w∥eσ for all v, w ∈ cbX+. □

Proof of Proposition 4.1. Let Assumption 4.1 and Condition 4.1 hold. Part (a) and
(b) are equivalent by Lemma 2.2. Fix σ ∈ ΣC . Then, we have rσ ∈ cbX+ and
Tσv = rσ + Lσv for v ∈ cbX+. Since Lσ is irreducible and L2

σ is compact by Lemma
A.19, it follows from Theorem 3.1 of Stachurski et al. (2022b) that part (a) and (c)
are equivalent, and Tσ has no fixed point in cbX+ if ρ(Lσ) ⩾ 1. Then, part (e) and
(f) implies part (a), and clearly part (c) implies (e) and (f). Suppose that ρ(Lσ) < 1.
Lemma A.20 shows that ∥Tσv−Tσw∥eσ ⩽ ρ(Lσ)∥v−w∥eσ for all v, w ∈ cbX+, whence
a contraction map so that (a) implies (d). Finally, if that Tσ is a contraction map in
∥ · ∥eσ , then it is globally stable. □

Lemma A.21. If Condition 4.1 holds and ρ(L̄) < 1, then T is eventually contracting,
where L̄v := supσ∈ΣC

Lσv for v ∈ cbX+. Moreover, T is contracting on (cbX, ∥ · ∥w)
with modulus λ, where w :=

∑∞
n=0 L̄

n
1 and λ = supx(w(x)− 1)/w(x).

Proof of Lemma A.21. Suppose that Condition 4.1 holds and ρ(L̄) < 1. Since for all
v ∈ cbX+, there exists a v-greedy policy σ ∈ ΣC , we gave Tv = Tσv ⩽ supσ∈ΣC

Tσv.
Since Tv ⩾ supσ∈Σ Tσv by definition, we have Tv = supσ∈ΣC

Tσv. Then, the similar
proof for Lemma A.3 shows that ∥T nv−T nv′∥ ⩽ ∥L̄n1∥∥v− v′∥ for any v, v′ ∈ cbX+.
Since ρ(L̄) < 1, there is m ∈ N such that ∥L̄m1∥ ⩽ 1. Then, Tm is contractive.
Finally, the method in the proof of Lemma A.16 shows that T is contracting on
(cbX, ∥ · ∥w) with modulus λ. □
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Proof of Theorem 4.1. Let Condition 4.1 hold. Lemma A.13 implies Tv = supσ∈ΣC
Tσv

for v ∈ cbX+. If r ≡ f ∈ cbX+, and T has a fixed point in cbX+, then the argument
in Lemma A.17, with L̄ instead of L̂, shows ρ(L̄) < 1. Suppose that Assumption 4.1
and 4.2 hold. Proposition 4.1 implies (a). Lemma A.21 implies (b). The remaining
statements follow from Theorem 3.1. □

A.4. Proofs in Section 6. We also consider the following regular conditions in this
section.

Condition A.1.

(i) Γ is nonempty, compact-valued.

(ii) a 7→ r(x, a) is u.s.c. for all x ∈ X.

(iii) β is bounded and strictly positive.

(iv) a 7→
∫
X
f(y)β(x, a, y)P (x, a, y)dy is continuous on Γ(x) for all x ∈ X and for

f ∈ mbX.

If Condition A.1 is satisfied, we consider the value function spaces V and G defined
by

V := {v : X → R ∪ {−∞} : v ∈ mX, v/κ is bounded above,

and (x, a) 7→ Ex,av(x
′) is bounded below},

G := {g : G → R : g ∈ mG, g is bounded below, ∥g∥κ <∞,

and a 7→ g(x, a) is u.s.c. on Γ(x) for all x ∈ X}

where κ ⩾ 1 is a real-valued function on X, which is further defined in Assumption
6.1. We say that an MDP is regular if either one of Condition A.1 or 6.1 holds.

Lemma A.22. Suppose that Assumption 6.1 holds. If M is regular, then (G, ∥ · ∥κ)
is a Banach space.

Proof of Lemma A.22. Suppose that Assumption 6.1 holds, and M is regular. If
Condition 6.1 holds, then (G, ∥·∥κ) is complete follows from Ma et al. (2022). Suppose
that Condition A.1 holds. Let Bκ(G) be the space of Borel measurable real-valued
functions f on G satisfying ∥f∥κ < ∞. Since (Bκ(G), ∥ · ∥κ) is a Banach space, it
suffices to show that G is closed in Bκ(G). Let {gn} ⊂ G such that ∥gn − g∥κ → 0.
Clearly, ∥g∥κ is finite. We next show that a 7→ g(x, a) is u.s.c. for all x ∈ X. Fix
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x′ ∈ X. For all a0 ∈ Γ(x′) and y > g(x′, a0), let ε = y−g(x′, a0). Since ∥gn−g∥κ → 0,
for all δ > 0 there exist N ∈ N such that for all x and a ∈ Γ(x) we have

|gN(x, a)− g(x, a)| < κ(x)δ.

We choose δ such that κ(x′)δ < ε/3. Since gN(x, ·) is u.s.c. on G(x) for all x ∈ X,
there exists a neighborhood U of a0 such that for all a ∈ U

gN(x
′, a) < gN(x

′, a0) + ε/3.

Hence, the previous inequalities imply

g(x′, a) < gN(x
′, a) + κ(x′)δ < gN(x

′, a0) + κ(x′)δ + ε/3

< g(x′, a0) + 2κ(x′)δ + ε/3 < g(x′, a0) + ε < y.

for all a ∈ U . Therefore, a → g(x′, a) is u.s.c.. Since x′ is arbitrarily picked, a 7→
g(x, a) is u.s.c. on Γ(x) for all x ∈ X. We conclude that G is closed in Bκ(G) and
then (G, ∥ · ∥κ) is complete. □

Lemma A.23 (Well-defined Value). If Assumption 6.1 hold, then vσ(x) and v∗(x)

are well-defined in R ∪ {−∞} for all x ∈ X and σ ∈ Σ.

Proof of Lemma A.23. Suppose that Assumption 6.1 holds. Fixing x and σ ∈ Σ.
Since r̄(x) ⩽ dκ(x) and Ex,aβ(x, a, x′)κ(x′)Ln1(x′) ⩽ ακ(x)Ln+1

1(x) for all x ∈ X

and n ⩾ 0, iteration implies that for all t ∈ N we have

Ex

t−1∏
i=0

β(xi, σ(xi), xi+1)r(xt, σ(xt)) ⩽ Ex

t−1∏
i=0

β(xi, σ(xi), xi+1)r̄(xt)

⩽ Ex

t−1∏
i=0

β(xi, σ(xi), xi+1)dκ(xt)

⩽ dEx

t−2∏
i=0

β(xi, σ(xi), xi+1)ακ(xt−1)L1(xt−1)

⩽ dαtκ(x)(Lt1)(x).
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Since there is an n ∈ N such that αn∥Ln∥ < 1 by assumption, we have

vσ(x) = Ex

∞∑
t=0

t−1∏
i=0

β(xi, σ(xi), xi+1)r(xt, σ(xt))

⩽
∞∑
t=0

dαt∥Lt1∥κ(x) ⩽ dκ(x)

∑n−1
t=0 α

t∥Lt∥
1− αn∥Ln∥

<∞.

Therefore, vσ(x) is well-defined in R ∪ {−∞} for all x ∈ X and σ ∈ Σ. Moreover,
since the upper bound holds for all σ ∈ Σ, the definition of v∗ implies that v∗(x) is
bounded above and then well-defined for all x ∈ X. □

Lemma A.24. If M is regular and Assumption 6.1 hold, then MG ⊂ V, EV ⊂ G,
TV ⊂ V and RG ⊂ G.

Proof of Lemma A.24. Let Condition A.1 and Assumption 6.1 hold (the proof for
Condition 6.1 is similar, see also Ma et al. (2022) for RG ⊂ G .) We first show that
EV ⊂ G. Let v ∈ V . Then, v/κ is bounded above and E(·,·)v(x

′) is bounded below.
Similar to Lemma 8.3.7 of Hernández-Lerma and Lasserre (2012b), we can show that
a 7→ Ex,aβ(x, a, x

′)v(x′) is u.s.c. on Γ(x) for all x ∈ X. In detail, fix x ∈ X and let
{an}t⩾0 ⊂ Γ(x) be such that an → a ∈ Γ(x). Since v/κ is bounded above, there
exists an m ∈ R such that v ⩽ mκ. Hence, v − mκ is non-positive, so there is a
non-increasing sequence of bounded measurable functions {vkm} such that vkm ↓ vm.22

Then, Assumption 6.1 implies that, for all k,

lim sup
n→∞

∫
vm(x

′)β(x, an, x
′)P (x, an, dx

′) ⩽ lim sup
n→∞

∫
vkm(x

′)β(x, an, x
′)P (x, an, dx

′)

=

∫
vkm(x

′)β(x, a, x′)P (x, a, dx′)

Letting k → ∞, the Monotone Convergence theorem yields that

lim sup
n→∞

∫
vm(x

′)β(x, an, x
′)P (x, an, dx

′) ⩽
∫
vm(x

′)β(x, a, x′)P (x, a, dx′).

To this end, since x ∈ X is arbitrary, a 7→ Ex,aβ(x, a,X
′)vm(X

′) = Evm(x, a) is
u.s.c. for all x ∈ Γ(x). It implies that Ev(x, ·) is u.s.c. on Γ(x). Furthermore, since
v/κ ⩽ m, Assumption 6.1 implies that, for all (x, a) ∈ G,

Ev(x, a) = Ex,aβ(x, a,X
′)v(x′) ⩽ Ex,aβ(x, a,X

′)mκ(x′) ⩽ mκ(x)αL1(x).

22If Condition 6.1 holds, then κ is continuous and v is u.s.c., implying v − mκ is u.s.c.. Then,
there is a {vkm} ⊂ cbX such that vkm ↓ vm.
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Hence, Ev/κ is bounded above by mα∥L∥. Moreover, to see that Ev is bounded
below, let B := {x ∈ X : v(x) < 0}. Since v/κ is bounded above, we have∫

X\B
v(x′)P (x, a, dx′) ⩽

∫
X\B

mκ(x′)P (x, a, dx′) ⩽ m∥κ∥.

for all (x, a) ∈ G. Since E(·,·)v(x
′) is bounded below, there is e ∈ R such that∫

B

v(x′)P (x, a, dx′) +

∫
X\B

v(x′)P (x, a, dx′) ⩾ e

for all (x, a) ∈ G. The above two inequalities imply∫
B

v(x′)P (x, a, dx′) ⩾ e−
∫
X\B

v(x′)P (x, a, dx′) ⩾ e−m∥κ∥,

for all (x, a) ∈ G. Since β is bounded, we see that Ev(·, ·) = E(·,·)β(·, ·, x′)v(x′) is also
bounded below: for all (x, a),∈ G

Ex,aβ(x, a,X
′)v(X ′) =

∫
B

β(x, a, x′)v(x′)P (x, a, dx′) +

∫
X\B

β(x, a, x′)v(x′)P (x, a, dx′)

⩾ ∥β∥(e−m∥κ∥).

Since Ev is bounded below and Ev/κ is bounded above, we conclude that ∥Ev∥κ <∞,
which implies Ev ∈ G and then EV ⊂ G.

Next, we show that MG ⊂ V . Let g ∈ G. Since r(x, ·) and g(x, ·) are u.s.c. on Γ(x)

for all x ∈ X, Proposition D.5 of Hernández-Lerma and Lasserre (2012a) implies that
x 7→ Mg(x) = supa∈Γ(x){r(x, a) + g(x, a)} is measurable. Moreover, Assumption 6.1
implies that for all x ∈ X

Mg(x) = sup
a∈Γ(x)

{r(x, a) + g(x, a)} ⩽ sup
a∈Γ(x)

{r(x, a)}+ sup
a∈Γ(x)

{g(x, a)}

⩽ dκ(x) + ∥g∥κκ(x).

Therefore, Mg/κ is bounded above. Also, since ∥g∥κ <∞ and κ is bounded, we have
|g(·)| ⩽ ∥g∥κκ(·) < ∞ so that g is bounded below by some g ∈ R. Then, we have,
for all (x, a) ∈ G,

Ex,aMg(X ′) = Ex,a sup
a′∈Γ(X′)

{r(X ′, a′) + g(X ′, a′)} ⩾ Ex,a sup
a′∈Γ(X′)

{r(X ′, a′) + g}

= Ex,ar̄(X
′) + g = r̂(x, a) + g.
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Since r̂ is bounded below by assumption, E(·,·)Mg(X ′) is bounded below. Therefore,
we have Mg ∈ V and then MG ⊂ V . Now, since T = ME and R = EM , we obtain
that TV =MEV ⊂MG ⊂ V and RG = EMG ⊂ EV ⊂ G. □

Lemma A.25. Let M be regular and Assumption 6.1 hold. If ḡ is the unique fixed
point of R, then v̄ = Mḡ is the unique fixed point of T and ḡ = Ev̄. In addition, R
is globally stable on G if and only if T is globally stable on V.

Proof of Lemma A.25. Let M be regular and Assumption 6.1 hold. Let ḡ be unique
the fixed point of R. Since T =ME and R = EM , we have Mḡ =MRḡ =MEMḡ =

TMḡ, so that Mḡ is a fixed point of T . Suppose that v ̸= Mḡ is a fixed point of T .
Then, since v is a fixed point of T , we obtain Ev = ETv = EMEv = REv implies
that Ev is a fixed point of R. Since ḡ is the unique fixed point of R, we must have
ḡ = Ev and then Mḡ = MEv = Tv = v. Therefore, Mḡ must be the unique fixed
point of T .

The above statement also shows ḡ = Ev̄. For the second statement, observe the
iteration T nv = (ME)nv = M(EM)n−1Ev = MRn−1Ev for any v ∈ V . Since R is
globally stable and Ev ∈ G, we have Rn−1Ev → ḡ as n → ∞. Hence, T nv → Mḡ as
n → ∞ for any v ∈ V . Similarly, we can show that the global stability of T implies
the global stability of R. □

Lemma A.26. If M is regular and Assumption 6.1 hold, then R is eventually con-
tracting and globally stable on (G, ∥ · ∥κ), and T is globally stable on (V , ∥ · ∥).

Proof of Lemma A.26. Suppose that M is regular and Assumption 6.1 hold. Lemma
A.24 shows that RG ⊂ G and TV ⊂ V . Fix g, h ∈ G. Assumption 6.1 (b) implies that
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for all (x, a) ∈ G we have

|Rg(x, a)−Rh(x, a)| =

∣∣∣∣∣Ex,aβ(x, a,X ′)

[
sup

a′∈Γ(X′)

{r(X ′, a′) + g(X ′, a′)}

− sup
a′∈Γ(X′)

{r(X ′, a′) + h(X ′, a′)}

]∣∣∣∣∣
⩽ Ex,a

(
β(x, a,X ′) sup

a′∈Γ(X′)

|g(X ′, a′)− h(X ′, a′)|

)
⩽ Ex,aβ(x, a,X

′)∥g − h∥κκ(X ′)

⩽ ∥g − h∥κκ(x)αL1(x).

Then, iteration implies

|R2g(x, a)−R2g(x, a)| ⩽ Ex,aβ(x, a,X ′) sup
a′∈Γ(X′)

|Rg(X ′, a′)−Rg(X ′, a′)|

⩽ Ex,aβ(x, a,X
′)∥g − h∥κκ(X ′)αL1(X ′)

⩽ ∥g − h∥κκ(x)α2L2
1(x).

Induction yields

|Rng(x, a)−Rnh(x, a)| ⩽ ∥g − h∥κκ(x)αnLn1(x)

for all (x, a) ∈ G and n ∈ N. Dividing κ(x) on the both sides and taking supremum,
we obtain

∥Rng −Rnh∥κ ⩽ ∥g − h∥καn∥Ln1∥ ⩽ ∥g − h∥καn∥Ln∥.

Since there exists an n ∈ N such that ∥Ln∥ < 1 and α < 1/∥Ln∥1/n, R is eventually
contracting on (G, ∥ · ∥κ), whence it is also globally stable by the generalized Banach
contraction mapping theorem. Finally, Lemma A.25 implies that T is globally stable.

□

Lemma A.27. If M is regular and Assumption 6.1 hold, then a v-greedy policy and
a g-greedy policy exist for all v ∈ V and g ∈ G.

Proof of Lemma A.27. Let Condition A.1 and Assumption 6.1 hold. Let v ∈ V . Con-
dition A.1 and the proof of Lemma A.24 implies that a 7→ r(x, a)+Ex,aβ(x, a, C

′)v(C ′)

is u.s.c. for all x ∈ X. Since Γ(x) is compact for all x ∈ X, the v-greedy policy exists
by the Maximum theorem. Let g ∈ G. Then, a 7→ r(x, a) + g(x, a) is u.s.c. for
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all x ∈ X, so the g-greedy policy exists by the Maximum theorem. The proof for
Condition 6.1 is similar. □

Proof of Lemma 6.1. Let M be regular and Assumption 6.1 hold. Lemma A.25 im-
plies that v̄ = Mḡ is a unique fixed point of T , so v̄ = T v̄ ⩾ Tσv̄ for all σ ∈ Σ. Fix
σ ∈ Σ. Let {Xt} be a Pσ-Markov process and βσt = β(Xt, σ(Xt), Xt+1) for all t ∈ N0.
Then, since v̄ ⩾ Tσv̄ and ḡ =Mv̄ by Lemma A.25, iteration implies that for all x ∈ X

and σ ∈ Σ we have

v̄(X0) ⩾ Tσv̄(X0) = r(X0, σ(X0)) +EX0,σ(X0)β0v̄(X1)

⩾ r(X0, σ(X0)) +EX0,σ(X0)β
σ
0 [r(X1, σ(x1)) +EX1,σ(X1)β

σ
1 v̄(X2)]

⩾ . . .

⩾ EX0,σ(X0)

N∑
t=0

t−1∏
i=0

βσi r(Xt, σ(Xt)) +EX0,σ(X0)β
σ
0 β

σ
1 · · · βσN−1EXN ,σ(XN )β

σ
N v̄(XN+1)

= EX0,σ(X0)

N∑
t=0

t−1∏
i=0

βσi r(Xt, σ(Xt)) +EX0,σ(X0)β
σ
0 β

σ
1 · · · βσN−1ḡ(XN , σ(xN)).

(27)

Now, Assumption 6.1 implies

|EX0,σ(X0)β
σ
0 β

σ
1 · · · βσN−1ḡ(XN , σ(XN))| ⩽ EX0,σ(X0)β

σ
0 β

σ
1 · · · βσN−1|ḡ(XN , σ(XN))|

⩽ EX0,σ(X0)β
σ
0 β

σ
1 · · ·EXN−1,σ(XN−1)β

σ
N−1∥g∥κκ(XN)

⩽ ∥g∥κEX0,σ(X0)β
σ
0 β

σ
1 · · · βσN−2κ(XN−1)αL1(XN−1)

⩽ . . .

⩽ ∥ḡ∥κκ(X0)α
NLN1(X0)

⩽ ∥ḡ∥κκ(X0)∥αNLN1∥.

Since there exists an n ∈ N satisfying αn∥L∥n < 1, letting N = pn+ q with p, q ∈ N0

and q < n, we obtain

αN∥LN1∥ ⩽ (αnp∥Lnp∥)αq∥Lq∥ ⩽ (αn∥Ln∥)pmax
q<n

{αq∥Lq∥} → 0 as n(N) → ∞.

Therefore, letting N → ∞, (27) and Lemma A.23 imply that v̄(x0) ⩾ vσ(x0) for all
x0 and σ ∈ Σ. Hence, we have v̄ ⩾ supσ vσ = v∗. Next, since ḡ = Ev̄ and ḡ-greedy
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policy exists by Lemma A.27, there exists σ∗ such that

v̄(x) =Mḡ(x) = r(x, σ∗(x)) + g(x, σ∗(x))

= r(x, σ∗(x)) +Ex,σ∗(x)β(x, σ
∗(x), x′)v̄(x′) = Tσ∗ v̄(x).

(28)

for all x ∈ X. Hence, the same iteration of (27) with v̄ = Tσ∗ v̄ implies v̄ = vσ∗ ⩽ v∗.
We conclude that v̄ = v∗. The above arguments also show that a g∗-greedy policy σ∗

is optimal: v∗ = vσ∗ ((b) ⇒ (a)), and an optimal policy exists. We now show that
part (a) implies (b). We write Mσg(x) = r(x, σ(x)) + g(x, σ(x)) for x ∈ X, g ∈ G and
σ ∈ Σ. Since ḡ = Ev∗, if σ∗ is optimal, then we have

Mσ∗ ḡ =Mσ∗Ev∗ = Tσ∗v∗ = Tσ∗vσ∗ = vσ∗ = v∗ = Tv∗ =MEv∗ =Mḡ.

Hence, σ∗ is ḡ-greedy. We next show that a policy is ḡ-greedy if and only if it is
Mḡ-greedy. If σ ∈ Σ is ḡ-greedy: Mσḡ = Mḡ, then TMḡ = MEMḡ = MRḡ =

Mḡ = Mσḡ = MσRḡ = MσEMḡ = TσMḡ, whence σ is Mḡ-greedy. Conversely, if σ
is Mḡ-greedy: TσMḡ = TMḡ, then Mσḡ = MσRḡ = MσEMḡ = TσMḡ = TMḡ =

MEMḡ = MRḡ = Mḡ, whence σ is ḡ-greedy. Similarly, the same method shows
that a policy is v∗-greedy if and only if it is Ev∗-greedy. □

Proof of Theorem 6.1. Let Condition A.1 and Assumption 6.1 hold. Part (a) follows
from A.23. Part (b) follows from Lemma A.26. Part (c), (d), (f), and (g) follow from
Part (b), Lemma A.25, and 6.1. Part (e) follows from Part (b) and (c). □

Proof of Lemma 6.2. Let all the stated assumptions hold. We show the statement by
induction. First, observe that

r̂(x, a) = Ezu(R(ε
′)(w − c) + y(ε′, Z ′)) ⩾ Ezu(y(Z

′, ε′)) > −∞,

r̄(x) = sup
0⩽c⩽w

u(c) = u(w) ⩽ pw + q =: κ(x).

The last equation implies that we can set d = 1 in Assumption 6.1. Also, observe
that

Ex,aκ(X
′) = pEz(R(ε

′)(w − c) + y(Z ′, ε′)) + q
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is continuous in (x, a) = (w, z, c). Therefore, Assumption 6.1 (a) and (c) hold. Next,
note that

Ex,aβ(x, a,X
′)κ(X ′)

κ(x)
=
Ezβ(z, Z

′)(pW ′ + q)

pw + q

=
Ezβ(z, Z

′)[p(R(ε′)(w − c) + y(Z ′, ε′)) + q]

pw + q

⩽
Ezβ(z, Z

′)[p(R(ε′)w + y(Z ′, ε′)) + q]

pw + q
.

Since the right-hand side is a monotone function of w and then achieves the supremum
at either w = 0 or w = ∞, we have

Ex,aβ(x, a,X
′)κ(x′)

κ(x)
⩽ max

{
Ezβ(z, Z

′)[py(Z ′, ε′) + q]

q
,Ezβ(z, Z

′)ER(ε′)

}
.

where the last inequality follows from that εt is IID. Then, since q > 1 can be
arbitrarily large, (19) implies

Ezβ(z, Z
′)[py(Z ′, ε′) + q]

q
→ Ezβ(z, Z

′)

as q → ∞. Since ER(ε′) > 1, we have

Ex,aβ(x, a,X
′)κ(X ′)

κ(x)
⩽ Ezβ(z, Z

′)ER(ε′) =: L1(x)

for large enough q > 1. Hence, we have Ex,aβ(x, a,X ′)κ(X ′)L0
1(x′) ⩽ κ(x)L1(x) for

large enough q > 1. Assume the induction hypothesis thatEx,aβ(x, a,X ′)κ(X ′)Ln1(X ′) ⩽

κ(x)Ln+1
1(x) for some n ∈ {1, . . . ,m− 1}. Then, iteration yields

Ex,aβ(x, a,X
′)κ(x′)Ln+1

1(X ′)

κ(x)

⩽
Ezβ(z, Z

′)[p(R(ε′)w + y(Z ′, ε′)) + q]EZ′β1β2 . . . βn+1(ER(ε
′))n+1

pw + q

⩽ max

{
Ezβ(z, Z

′)[py(Z ′, ε′) + q]EZ′β1β2 . . . βn+1(ER(ε
′))n+1

q
,

Ezβ(z, Z
′)β1β2 · · · βn+1(ER(ε

′))n+2

}
→ max{Ezβ(z, Z ′)β1β2 · · · βn+1(ER(ε

′))n+1,

Ezβ(z, Z
′)β1β2 · · · βn+1(ER(ε

′))n+2}

⩽ Ln+2
1(x),
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where the first inequality uses the definitions of κ and Ln+1
1, the second inequality

follows from that the supremum is at either w = 0 or w = ∞, the limit follows
from taking q arbitrarily large, and the last inequality uses ER(ε′) > 1. Therefore,
induction implies that there is large enough q(n) > 1 such that

Ex,aβ(x, a,X
′)κ(X ′)Ln1(X ′) ⩽ κ(x)Ln+1

1(x)

for all x ∈ X and all n ∈ {1, . . . ,m− 1}. □

A.5. Proofs in Section 7.

Proof of Theorem 7.1. Let Condition 7.1, Assumption 7.1, 7.2, and 7.3 hold. Part
(a) follows from 7.1 and 7.2. Part (b), (c), (e), and (f) of optimality follow from the
proof of Theorem 5.3 of Ma et al. (2022) and Lemma 7.2 and 7.3. Part (d) follows
from (a) and (b). □
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